LLM
有望重新定义语言生成技术的扩散模型——LLaDA
译者 | 朱先忠审校 | 重楼简介如果我们能让语言模型更像人类一样思考,结果会怎样? 如果它们不是一次写一个字,而是先勾勒出自己的想法,然后逐渐完善,结果又会怎样? 这正是大型语言扩散模型(LLaDA)所引入的:一种与大型语言模型(LLM)中当前使用的文本生成不同的方法。
3/17/2025 11:35:36 AM
朱先忠
无需训练,100%完美检索!LLM练出「火眼金睛」,InfiniRetri超长文本一针见血
全新检索模式:在无限长token下,大语言模型自身或能检索信息! 受大语言模型(LLM)上下文窗口大小的限制,处理输入token数超过上限的各种任务颇具挑战性,无论是简单的直接检索任务,还是复杂的多跳推理任务。 尽管新提出的各种方法用来增强大语言模型的长上下文处理能力,但这些方法痛点突出:要么会产生高昂的训练后成本,要么需要额外的工具模块(如检索增强生成RAG),要么在实际任务中显示出改进,并不明显。
3/17/2025 9:40:00 AM
新智元
人工智能代理不是玩具,而是工人
为什么必须像评估劳动力一样评估LLM代理,而不仅仅是评估软件。 如果组织仅通过代码行数或聊天完成度等指标来衡量 AI 代理,则可能会低估其最具变革性的价值。 在许多方面,AI 代理更像员工,而不是传统的软件程序:它们可以学习、适应,甚至与人类团队合作。
3/13/2025 1:29:32 PM
佚名
大型语言模型是否解决了搜索问题?
译者 | 李睿审校 | 重楼尽管LLM在内容生成方面表现出色,但需要采用语义分块和向量嵌入等技术来解决复杂数据环境中的搜索问题。 大型语言模型(LLM)的涌现推动了信息检索和人机交互的范式转变。 这些模型在大量的文本语料库上进行训练,并针对预测语言任务进行了优化,在响应查询、总结文本内容和生成上下文相关信息方面展现出了显著成效。
3/13/2025 12:09:27 PM
李睿
只需7.6% token,性能还更强!华人团队提全新「草稿链」CoD,成本延迟大降
当下,企业正处于部署AI的关键节点。 随着AI系统在企业运营中的深度融合,计算成本与响应时间成为阻碍AI广泛应用的主要瓶颈。 来自Zoom的华人研究团队取得了一项突破性成果,他们开发的「草稿链」(Chain of Draft,CoD)技术,有望从根本上改变企业大规模部署AI的模式。
3/13/2025 10:40:00 AM
新智元
L²M条件,MIT团队为长文本建模建立新理论框架
编辑 | ScienceAI在追求更强大 AI 系统的道路上,大语言模型处理长上下文的能力始终是制约其发展的关键瓶颈。 尽管 DeepSeek、GPT-4、LLaMA-3 等顶尖模型已能处理数万 token 的文本,但学界对「模型究竟需要何种能力才能有效理解长文本」这一根本问题仍缺乏理论指导。 近日,麻省理工学院 Zhuo Chen、Oriol Mayn ́e i Comas 、Zhuotao Jin 、Di Luo 、Marin Soljači 领衔的研究团队提出自然语言中隐藏的互信息缩放定律(Mutual Information Scaling Law),并由此提出长上下文语言建模的 L²M 条件(Long-context Language Modeling condition),为理解大语言模型的长文本处理能力建立了首个系统化理论框架。
3/11/2025 12:17:00 PM
ScienceAI
DeepSeek级AI?训练自己的推理模型仅需七个步骤
译者 | 布加迪审校 | 重楼谁需要超级计算机? 仅用15GB VRAM就可以训练你自己的功能强大的AI推理模型! DeepSeek的R1模型在不需要人类反馈的情况下就能进行更深思熟虑的推理,已颠覆了大语言模型(LLM)领域。
3/11/2025 8:37:42 AM
布加迪
六种LLM定制开发基本策略:提示工程、解码策略、RAG、代理、微调和RLHF
译者 | 朱先忠审校 | 重楼为什么要定制LLM? 大型语言模型是基于自监督学习预训练的深度学习模型,需要大量的训练数据资源、训练时间并保存大量参数。 尤其是在过去2年里,LLM彻底改变了自然语言处理,在理解和生成类似人类的文本方面表现出色。
3/11/2025 8:00:00 AM
朱先忠
软件行业的颠覆性革命:AI不仅吞噬一切,它就是一切
从前,软件吞噬了世界。 如今,AI来了,要消化剩下的部分。 曾经由应用程序主导、市场控制访问、平台抽取分成的计算模式正在瓦解。
3/10/2025 1:11:00 PM
Justin Westcott
手搓RAG新增功能:递归检索与迭代查询+重回成熟框架API
在上那篇提到的我手搓的那个 RAG 项目新增功能中,漏掉了递归检索与迭代查询,这篇补上(源码见知识星球)。 经过初步调试对召回效果有明显提升,这种方法解决了传统 RAG 的几个关键问题:处理复杂多步骤问题:通过多次迭代,分解复杂问题信息不足的补充:当初始检索结果不足以回答问题时,自动生成补充查询多角度信息收集:能够从不同角度收集相关信息1、递归检索具体实现递归检索函数(recursive_retrieval)(支持最多三次迭代查询)每次迭代使用混合检索(向量检索 BM25)获取信息使用 LLM 分析当前检索结果,判断是否需要进一步查询如果需要,LLM 会生成新的查询问题,用于下一轮检索换句话说,递归检索的工作原理可以理解为"先检索-后思考-再检索"的过程,模拟了人解决问题的方式:先获取一些信息,思考下是否足够,如果不够则继续查找更多相关信息。 总之,好的结果不是一蹴而就的。
3/10/2025 9:20:00 AM
韦东东
智谱携Agentic LLM参加巴塞罗那通信展
在3月3日,由华为举办的“移动AI产业峰会”上,智谱副总裁林超婷受邀发表题为《LLM – Transformative Revolution in Technology and Industry》的演讲。 林超婷指出,Agentic LLM正在改变整个手机产业,借助AI能力重新定义下一代互联网入口。 将来,Agentic AI助手,可以像人一样可以收集和总结信息,听说读写和思考,记住个人偏好等等。
3/5/2025 2:53:00 PM
新闻助手
全面增强LLM推理/规划/执行力!北航提出全新「内置CoT」思考方法
用户已经习惯于将大模型如ChatGPT、Llama-3-chat等当作聊天对象,然而在用户和聊天助手的会话中,有的用户提示(例如一些命令或请求)不能在一轮会话中结束,需要大语言模型和用户进行多轮会话。 这种跨越多轮的会话目前仍然存在一些问题:大语言模型的回答容易出错,不能帮助用户达到目标,且随着会话轮数增加出错概率会增大。 对同一个命令或问题,大语言模型比较难以根据实际需求产生不同流程的响应,在需要大语言模型与环境交互时,目前比较流行的做法是使用函数调用或工具调用,但不够优雅和高效,而且由于上下文窗口的限制,能支持的工具调用数量有限。
3/5/2025 4:00:00 AM
新智元
DeepSeek搭建个人知识库教程,你学会了吗?
各位朋友,是不是经常被 AI 气得火冒三丈,恨不得把键盘给砸了? 你让它查公司去年的财务数据,它却开始背诵经济学原理;你让它分析竞品的策略,它却大谈特谈马斯洛需求理论。 我太能理解这种感受了,这就好比你花钱雇了个助理,结果这助理啥都不会,只会照搬百度百科的内容!
3/4/2025 9:26:37 AM
派大星
LLM 大语言模型定义以及关键技术术语认知
大语言模型定义LLM(Large Language Models)是基于 Transformer 架构(可以理解为不同寻常的大脑)的深度神经网络,通过海量文本数据训练获得语言理解和生成能力。 其核心特征包括:参数规模达数十亿级别(GPT-3 175B参数)知识储备惊人,可以理解为脑细胞数量是普通人的千亿倍(1750亿参数),相当于把整个图书馆的书都装进大脑自回归生成机制(逐词预测)说话方式像接龙,当它写作文时,就像我们玩词语接龙:先写"今天",然后根据"今天"想"天气",接着根据"今天天气"想"晴朗",逐字逐句生成内容。 注意力机制实现长程依赖建模特别会抓重点就像我们读小说时,会自动记住关键人物关系(比如注意到"陈平安喜欢宁姚"),它能自动捕捉文字间的深层联系。
3/4/2025 1:00:00 AM
山河已无恙
RAG(一)RAG开山之作:知识密集型NLP任务的“新范式”
在AI应用爆发的时代,RAG(Retrieval-Augmented Generation,检索增强生成)技术正逐渐成为AI 2.0时代的“杀手级”应用。 它通过将信息检索与文本生成相结合,突破了传统生成模型在知识覆盖和回答准确性上的瓶颈。 不仅提升了模型的性能和可靠性,还降低了成本,增强了可解释性。
3/3/2025 11:41:11 AM
Glodma
2025年的五大AI趋势:智能体、开源和多模型
随着AI技术的飞速发展,2025年的AI领域将迎来前所未有的变革。 从开源AI的崛起,到多模态AI的普及,再到本地AI的蓬勃发展,以及AI成本的显著降低和智能体的广泛应用,这五大趋势将深刻影响企业和个人的未来发展。 2025年,AI领域不再仅仅局限于大型语言模型(LLM),而是聚焦于更智能、更廉价、更专业和更本地的AI解决方案,这些方案能够处理多种数据类型,并实现自主行动。
3/3/2025 11:16:18 AM
Sol Rashidi
LLM表现出类似人类的“认知”下降迹象
GenAI问世不到两年,就在各个行业带来了众多创新,包括科学突破和前所未有的自动化和数据处理效率。 大型语言模型(LLM)经常被比作人类智能。 一些人工智能系统甚至在某些任务中表现优于人类。
3/3/2025 10:18:46 AM
AI情报室
资讯热榜
智谱AI全新企业级超级助手Agent CoCo正式上线
苹果发布全新Xcode 26开发者工具:内置ChatGPT先进AI功能
豆包App“一句话P图”功能全新升级 基于SeedEdit 3.0实现全面优化
DeepSeek前高管秘密创业,新AI Agent项目已获顶级VC押注
那个男人回来了!Ilya现身多伦多大学毕业典礼:AI 像是用数字方式复制出来的大脑!不管你愿不愿意,AI都将深刻影响你的一生!
ChatGPT 语音功能升级,实时翻译对话更自然流畅
支持MCP!开源智能体开发框架 Rowboat:打造你的智能助手只需几分钟
苹果向开发者开放本地AI能力,推出全新Foundation Models框架
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
数据
谷歌
机器人
大模型
Midjourney
用户
智能
开源
微软
GPT
学习
Meta
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
代码
英伟达
Anthropic
芯片
生成式
开发者
蛋白质
腾讯
神经网络
研究
3D
生成
训练
苹果
计算
智能体
Sora
机器学习
AI设计
AI for Science
Claude
GPU
AI视频
人形机器人
华为
搜索
场景
百度
大语言模型
xAI
预测
伟达
深度学习
Transformer
字节跳动
Agent
模态
具身智能
神器推荐
LLaMA
文本
视觉
Copilot
算力
工具
LLM
驾驶
API
大型语言模型
应用
RAG
亚马逊