AI在线 AI在线

LLM

AM-Thinking-v1:解锁 32B 模型推理潜力的密码

大家好,我是肆〇柒。 本篇想和大家分享一个后训练的模型案例 ——AM-Thinking-v1 模型。 这个模型是由贝壳(Ke.com)公司旗下的 a-m-team 团队开发的,他们一直致力于探索 AGI 技术。
6/18/2025 2:30:00 AM
肆零柒

LLM 翻车现场!ChatGPT 挑战 1979《Video Chess》惨败:连车马象都认错

一场 ChatGPT 对战 Atari 2600 的象棋对局火了。 具体而言,在一场看似轻松的“AI玩具对决”里,ChatGPT输给了Atari 2600 的象棋引擎,对手只是一台48年前、频率1.19 MHz的8位主机。 图片起初,这只是Robert Jr.
6/17/2025 5:16:51 PM

鹅厂实习生血泪贴:Agent/RAG 黑科技,真相竟是这样!

作者 | 33号实验室/knnwang被Agent/RAG吊打? 你缺的不是智商,是这篇文章! 亲历鹅厂IEG/WXG项目实战,大三菜鸟用血泪debug记录, 撕开AI基石真面目 → 黑科技本质 = ______!
6/17/2025 9:15:07 AM
腾讯技术工程

迈向人工智能的认识论:如何推理对齐和改变他们的思维

要理解 LLM 的行为方式,回顾一下其架构基础知识会很有帮助:Transformer。 Vaswani等人提出的 Transformer 从根本上建立在自注意力层之上。 每一层都允许模型在输入以及之前生成的输出token 之间动态地重新分配注意力,这意味着它可以在每一步检索它认为相关的任何信息。
6/17/2025 6:21:13 AM
晓晓

ACL 2025|为什么你设计的 Prompt 会成功?新理论揭示大模型 Prompt 设计的奥秘与效能

本文共同一作是张翔和曹峻泰。 张翔是英属哥伦比亚大学研究生,主要研究兴趣集中在大模型推理和 AI for Science;曹峻泰是英属哥伦比亚大学研究生,主要研究兴趣集中在大模型推理和可解释性研究;本文通讯作者是来自纽约大学石溪分校的助理教授尤晨羽,以及来自 Meta Gen AI 的研究员丁渡鉴。 近年来,大型语言模型(LLM)在自然语言处理领域取得了革命性进展。
6/16/2025 2:44:14 PM

Apple Again Criticized for AI Reasoning Ability: GitHub Celebrity Rebuttal: This Is Not the Real Picture of Reasoning Ability!

Recently, Apple published a controversial paper pointing out significant defects in the reasoning abilities of current large language models (LLMs). This view quickly sparked heated discussions on social media, especially among senior software engineer Sean Goedecke from GitHub, who strongly opposed this conclusion. He argued that Apple's findings were overly simplistic and could not fully reflect the capabilities of reasoning models.Apple's paper highlighted that LLMs perform inconsistently when tackling benchmark tests such as mathematics and programming.
6/16/2025 9:49:06 AM
AI在线

Thinkless框架:让LLM学会“聪明偷懒”的智慧

大家好,我是肆〇柒。 今天,我想和大家聊一下,我看到关于自适应思考的另外一片论文,它介绍了Thinkless 框架,并且还有开源仓库。 今天我们要了解的 Thinkless 这个框架,由新加坡国立大学的研究人员提出,它能够巧妙地解决当前推理语言模型(LLM)在处理简单问题时过度推理、浪费资源的难题。
6/16/2025 9:40:48 AM
肆零柒

苹果《思考的错觉》再挨批,Claude与人类共著论文指出其三大关键缺陷

几天前,苹果一篇《思考的错觉》论文吸睛无数又争议不断,其中研究了当今「推理模型」究竟真正能否「推理」的问题,而这里的结论是否定的。 论文中写到:「我们的研究表明,最先进的 LRM(例如 o3-mini、DeepSeek-R1、Claude-3.7-Sonnet-Thinking)仍然未能发展出可泛化的解决问题能力 —— 在不同环境中,当达到一定复杂度时,准确度最终会崩溃至零。 」不过,这篇论文的研究方法也受到了不少质疑,比如我们的一位读者就认为「给数学题题干加无关内容,发现大模型更容易答错,而质疑大模型不会推理」的做法并不十分合理。
6/16/2025 8:48:00 AM

LLM已能自我更新权重,自适应、知识整合能力大幅提升,AI醒了?

近段时间,关于 AI 自我演进/进化这一话题的研究和讨论开始变得愈渐密集。 本月初我们就曾梳理报道了一些,包括 Sakana AI 与不列颠哥伦比亚大学等机构合作的「达尔文-哥德尔机(DGM)」、CMU 的「自我奖励训练(SRT)」、上海交通大学等机构提出的多模态大模型的持续自我改进框架「MM-UPT」、香港中文大学联合 vivo 等机构的自改进框架「UI-Genie」。 那之后,相关研究依然还在不断涌现,以下拼图展示了一些例子:而前些天,OpenAI CEO、著名 𝕏 大 v 山姆・奥特曼在其博客《温和的奇点(The Gentle Singularity)》中更是畅想了一个 AI/智能机器人实现自我改进后的未来。
6/16/2025 8:46:00 AM

别让千亿参数成摆设!万字解读LLM应用的生存法则

现在大家都在聊大模型,动不动就说什么“智能涌现”、“颠覆行业”。 但说实话,真正能把大模型用好的,不是谁喊得响,而是看谁的系统设计够硬核! 什么是大模型应用系统设计?
6/16/2025 8:06:51 AM
曹洪伟

AI记忆伪装被戳穿!GPT、DeepSeek等17款主流大模型根本记不住数字

在进入本文之前,我们先来玩个 10 秒小游戏:在心里选一个「1-10」的整数。 现在设想我问:「你想的是 5 吗? 」如果听到是自己的数字,你会本能地答 Yes,其余统统 No。
6/16/2025 6:00:00 AM
机器之心

迈向人工智能的认识论:真的没有人真正了解大型语言模型 (LLM) 的黑箱运作方式吗

如果大型语言模型能够推理,但没有人能够看到它是如何推理的,那么它真的在思考吗? 简而言之,像 GPT-4 这样的大型语言模型 (LLM) 展现出卓越的能力,但其运作方式却如同“黑匣子”,这意味着它们的内部决策过程在很大程度上是不透明的,甚至对其创建者而言也是如此。 本系列文章综合了近期关于 LLM 可解释性的研究,重点关注这些模型的推理方式、其解释的可靠性(思维链)以及对安全性和部署的影响。
6/16/2025 2:30:00 AM
晓晓

TypeScript 杀疯了,开发 AI 应用新趋势!

随着 AI 技术的迅猛发展,越来越多开发者开始构建基于大模型(LLM)、多智能体协作、浏览器端推理等新型应用。 在这一浪潮中,TypeScript 凭借其强大的类型系统、成熟的工具链和活跃的生态,正逐步成为现代 AI 应用开发的主流选择之一。 根据 Y Combinator 统计,约有 60% 至 70% 的 AI Agent 初创公司采用 TypeScript 开发。
6/13/2025 11:25:04 AM
CUGGZ

强化预训练(RPT):LLM 预训练新范式,当模型学会战略思考

大家好,我是肆〇柒。 在当下,大型语言模型(LLM)正以其卓越的能力在诸多任务中引人瞩目。 这些能力的提升,很大程度上得益于在大规模文本数据上的 next-token-prediction 自监督学习范式。
6/13/2025 9:29:51 AM
肆零柒

AI自动写学术综述:10分钟生成6万字,成本不到四块钱

学术综述论文在科学研究中发挥着至关重要的作用,特别是在研究文献快速增长的时代。 传统的人工驱动综述写作需要研究者审阅大量文章,既耗时又难以跟上最新进展。 而现有的自动化综述生成方法面临诸多挑战:AI生成的综述结构往往缺乏连贯逻辑,组织结构较差,存在宽度和深度的结构失衡问题;在参考文献方面,经常无法引用真正相关和有影响力的文献,容易引用无关文献而忽略核心贡献;评估方式主要依赖LLM整体质量评估,缺乏对大纲质量、参考文献相关性等关键方面的细粒度分析。
6/13/2025 9:08:00 AM

一文读懂LLM基于JSON Schema的结构化输出

什么是基于JSON Schema的结构化输出大语言模型通常会生成无特定结构的自由格式文本,在能够有效使用之前需要进行大量的后期处理。 这种不可预测性会导致错误、浪费时间并增加成本。 OpenAI推出基于JSON Schema的结构化输出以解决这一问题。
6/12/2025 2:30:00 AM
AI大模型应用开发

Mistral的首个强推理模型:拥抱开源,推理速度快10倍

大模型强推理赛道,又迎来一位重量级玩家。 本周二,欧洲人工智能公司 Mistral AI 发布了 Magistral,这是一个全新的大语言模型(LLM)系列,展现了强大的推理能力。 它能够进行不断反思,并解决更复杂的任务。
6/11/2025 2:39:50 PM

一招缓解LLM偏科!调整训练集组成,“秘方”在此 | 上交大&上海AI Lab等

大幅缓解LLM偏科,只需调整SFT训练集的组成。 本来不擅长coding的Llama 3.1-8B,代码能力明显提升。 上海交大&上海AI Lab联合团队提出创新方法IDEAL,可显著提升LLM在多种不同领域上的综合性能。
6/11/2025 9:17:00 AM