AI在线 AI在线

LLM

网络犯罪分子将恶意AI推向新高度

网络犯罪分子已开始利用地下论坛帖子和泄露数据来优化恶意的大型语言模型(LLM),以便为特定的诈骗方案定制AI模型,威胁情报公司Flashpoint警告称。 具体而言,诈骗者正在使用恶意数据集(如泄露的凭证、诈骗脚本和信息窃取日志)对非法LLM(包括WormGPT和FraudGPT)进行微调。 当对手利用这些模型生成输出时,他们会收集用户反馈来微调回应,从而形成一个恶性循环,使攻击能力随时间不断增强。
7/2/2025 7:25:00 AM
John Leyden

提示工程运维崛起:应对错误输入和语境膨胀带来的隐性AI成本

模型提供商不断推出越来越复杂的大型语言模型(LLM),这些模型具有更长的上下文窗口和增强的推理能力。 这使得模型能够处理更多信息并进行更多“思考”,但同时也增加了计算量:模型处理和输出的信息越多,消耗的能量就越大,成本也就越高。 再加上提示词调整(prompting)所涉及的反复试验——可能需要尝试几次才能得到预期结果,而且有时手头的问题根本不需要一个能像博士那样思考的模型——计算支出可能会失去控制。
7/2/2025 7:25:00 AM
Taryn

图驱动的自然语言接口:混合LLM与意图分类方法

在当今数据驱动的商业环境中,数据分析人员和营销人员经常需要与复杂的数据库交互以获取洞察。 然而,并非所有人都精通SQL等结构化查询语言,这就催生了对自然语言接口的需求。 本文将深入探讨一种创新的意图驱动自然语言接口,该接口结合了大型语言模型(LLM)和意图分类技术,为数据洁净室(Data Clean Rooms, DCRs)等隐私敏感环境提供了安全、高效的解决方案。
7/1/2025 9:00:00 AM
大模型之路

RAG搭建个人LLM知识库助手,很多人第一步就走错了...

基于RAG技术搭建本地知识库问答助手,已经是相当普遍的应用方案了。 前一阵我在公司实践过,用我们过往积累的、对业务重要的内部知识构建知识库,开发了一个智能问答Agent,能减少团队一部分的答疑时间。 构建知识库时,我们将内部知识整理成了 MarkDown 格式。
7/1/2025 2:22:00 AM
渡码

盘一盘,2017年Transformer之后,LLM领域的重要论文

这两天 Andrej Karpathy 的最新演讲在 AI 社区引发了热烈讨论,他提出了「软件 3.0」的概念,自然语言正在成为新的编程接口,而 AI 模型负责执行具体任务。 Karpathy 深入探讨了这一变革对开发者、用户以及软件设计理念的深远影响。 他认为,我们不只是在使用新工具,更是在构建一种全新的计算范式。
6/30/2025 8:48:00 AM

AgentAuditor:让智能体安全评估器的精确度达到人类水平

LLM 智能体(LLM Agent)正从 “纸上谈兵” 的文本生成器,进化为能自主决策、执行复杂任务的 “行动派”。 它们可以使用工具、实时与环境互动,向着通用人工智能(AGI)大步迈进。 然而,这份 “自主权” 也带来了新的问题:智能体在自主交互中,是否安全?
6/30/2025 8:32:00 AM

智能体规模化部署的隐形悬崖:如何避免部署崩盘?

想要构建并扩展智能体的企业还需要接受另一个现实:智能体的构建方式与其他软件截然不同。 根据Writer公司的CEO兼联合创始人May Habib的说法,智能体在构建方式、运行方式以及改进方式上都“有着根本的不同”,这意味着在处理自适应系统时,需要摒弃传统的软件开发生命周期(SDLC)。 “智能体并不总是可靠地遵循规则,”Habib在周三VB Transform大会的舞台上表示,“它们是结果导向的,它们会解读信息,会适应变化,而且,它们的行为真的只有在现实世界环境中才会显现出来。
6/30/2025 7:07:00 AM
Marty Swant

面向RAG与LLM的分块策略权威指南:从基础原理到高级实践

在现代人工智能系统架构中,当大型语言模型(LLMs)和向量数据库吸引着大部分目光时,一个更为基础的处理过程正在幕后默默工作——它最终决定了系统输出的质量、可靠性和相关性。 这个过程就是分块(Chunking):在信息到达模型之前对其进行策略性分割的关键步骤。 作为RAG(检索增强生成)系统的"隐藏架构",分块技术的优劣直接影响着LLM的理解、推理和回答能力,堪称AI应用的"智能基石"。
6/30/2025 4:15:00 AM
大模型之路

Gary Marcus惊世之言:纯LLM上构建AGI彻底没了希望!MIT、芝大、哈佛论文火了

今天,著名的人工智能学者和认知科学家 Gary Marcus 转推了 MIT、芝加哥大学、哈佛大学合著的一篇爆炸性论文,称「对于 LLM 及其所谓能理解和推理的神话来说,情况变得更糟了 —— 而且是糟糕得多。 」这项研究揭示了一种被称为「波将金式」(Potemkins)的推理不一致性模式(见下文图 1)。 研究表明,即使是像 o3 这样的顶级模型也频繁犯此类错误。
6/29/2025 1:43:24 PM
机器之心

无需数据标注:RLSC 如何用“自我信心”优化语言模型

大家好,我是肆〇柒。 当下,大型语言模型(LLM)如 ChatGPT、Qwen 等展现出了卓越的推理能力,能够在多种任务中提供高质量的解决方案。 然而,尽管这些模型具有强大的基础能力,但要使其行为与特定任务目标精准对齐,后训练优化仍然是不可或缺的关键步骤。
6/27/2025 4:00:00 AM
肆零柒

LLM 的反馈困境:为何大型语言模型难以完全吸收外部建议

大家好,我是肆〇柒。 在 AI 领域,大型语言模型(LLM)正以前所未有的速度改变着我们处理信息和解决问题的方式。 然而,在当下落地 AI 应用时,一个关键问题逐渐浮出水面:LLM 是否能够真正理解并整合外部反馈,从而实现自我改进并达到其性能的极限?
6/25/2025 10:21:08 AM
肆零柒

Cache Me If You Can:陈丹琦团队如何「抓住」关键缓存,解放LLM内存?

普林斯顿大学计算机科学系助理教授陈丹琦团队又有了新论文了。 近期,诸如「长思维链」等技术的兴起,带来了需要模型生成数万个 token 的全新工作负载。 大多数语言模型都基于 Transformer 架构,其在进行自回归解码(即逐字生成文本)时,需要将所有先前 token 的注意力状态存储在一个名为 KV 缓存的内存区域中。
6/25/2025 9:15:38 AM

为什么你的 AI 数据战略应该包含 MCP

随着代理系统变得越来越复杂,企业能力在这些系统中作为工具出现,建立明确且一致的规则对于自主工作流程的成功至关重要。 模型上下文协议 (MCP) 为代理、LLM 和企业系统提供通用语言。 将 MCP 纳入 AI 数据战略的企业将能够构建新功能,确保信任和可审计性,并适应快速发展的创新。
6/25/2025 2:30:00 AM
晓晓

LLM进入「拖拽时代」!只靠Prompt,几秒定制一个大模型,效率飙升12000倍

现在的大模型基本都具备零样本泛化能力,但要在真实场景中做特定的适配,还是得花好几个小时来对模型进行微调。 即便是像LoRA这样的参数高效方法,也只能缓解而不能消除每个任务所需的微调成本。 刚刚,包括尤洋教授在内的来自新加坡国立大学、得克萨斯大学奥斯汀分校等机构的研究人员,提出了一种全新的「拖拽式大语言模型」——Drag-and-Drop LLMs!
6/24/2025 1:52:38 PM

大型语言模型微调全攻略:从理论到实战的终极指南

译者|朱先忠审校|重楼微调是将预先在海量通用数据上训练好的大型语言模型,在更小、更具体的领域或任务数据集上进一步训练的过程。 其核心在于利用预训练模型获得的通用语言理解能力,通过特定数据进行针对性调整,使模型能深刻理解专业术语、领域规则和任务要求,从而生成更准确、更符合特定需求的输出。 引言想象你拥有一个像GPT-3或Llama 3这样强大的LLM,它已在互联网规模的文本上进行了预训练,能回答一般问题、创作文本、总结文章、翻译语言。
6/24/2025 8:52:54 AM
朱先忠

MemOS:打破 LLM “记忆”孤岛,实现 Agent 协同智能

大家好,我是肆〇柒。 在浏览论文时,我发现了一款用于构建 AI 应用的infra框架,它可以应用在 Agent 的 Memory 的管理构建上。 今天,我就为大家介绍一下这款框架 ——MemOS。
6/23/2025 9:26:24 AM
肆零柒

舍弃CUDA编程!CMU等用几十行代码将LLM编译成巨型内核,推理延迟可降6.7倍

在 AI 领域,英伟达开发的 CUDA 是驱动大语言模型(LLM)训练和推理的核心计算引擎。 不过,CUDA 驱动的 LLM 推理面临着手动优化成本高、端到端延迟高等不足,需要进一步优化或者寻找更高效的替代方案。 近日,CMU 助理教授贾志豪(Zhihao Jia)团队创新玩法,推出了一个名为「Mirage Persistent Kernel(MPK)」的编译器,可以自动将 LLM 转化为优化的巨型内核(megakernel),从而将 LLM 推理延迟降低 1.2 到 6.7 倍。
6/23/2025 8:55:00 AM

AI哪怕答案正确,逻辑链却惨不忍睹,奥数级不等式证明成功率不到50%| 斯坦福&伯克利&MIT

这不是段子,而是正在发生的现象。 大语言模型解决不等式证明问题时,可以给出正确答案,但大多数时候是靠猜。 推理过程经不起推敲,逻辑完全崩溃。
6/20/2025 8:54:00 AM