机器学习

人工智能的历史:从古代神话到现代机器,从图灵到未来

在人类宏伟成就的历史上,很少有演员能像人工智能一样如此引人注目、充满争议且大胆无畏。 深入人工智能 (AI) 的历史迷宫及其可能的未来,就像踏上一场穿越时空的冒险之旅,科幻小说与现实之间的界限比量子计算机解决魔方的速度更快。 请想象一下,如果有一天,机器不仅能执行任务,还能学习、适应和进化,你的烤面包机也许有一天会在国际象棋上胜过你,你的吸尘器也许能写出一首与莎士比亚媲美的十四行诗。

28年AGI撞上数据墙,以后全靠测试时计算?CMU详解优化原理

2025年主导AI的将是第3代scaling law:测试时计算。 正如Michael Dell转述所言:第一代scaling:预训练像读大学第二代scaling:微调像读博士第三代scaling:测试时计算就像深度思考和推理近日,计算机强校CMU机器学习系,发表博客文章解释LLM测试时计算优化问题,特别是涉及到的元强化学习(meta-RL)问题。 文章亮点如下:监督学习只是在训练模型「答案是什么」,只要学习「如何解答」,模型泛化性会更好。

使用 Yolov8 Flask 自定义训练实时火灾和烟雾检测

近年来,人工智能和机器学习的进步彻底改变了包括公共安全在内的各个行业。 这些技术在火灾和烟雾检测方面取得了显著进展,这对于早期预警系统和高效的应急响应至关重要。 实现这一目标的最有效方法之一是将YOLOv8强大的目标检测能力与基于Python的轻量级Web框架Flask的灵活性相结合。

人大、东北大学联合开发「图机器学习库」Jittor Geometric!性能超越PYG、DGL

近日,中国人民大学与东北大学联合开发了图机器学习库Jittor Geometric,其1.0版本近日已正式发布。 Jittor Geometric以国产深度学习框架Jittor为基础技术架构,聚焦图数据,在图存储、图计算、图学习等方面作了细致优化,整合、加速了现有多类图神经网络模型,模型运行时间在多种图学习任务上较Pytorch Geometric(PyG)、Deep Graph Library(DGL)等同类型框架提升10%~50%。 同时,Jittor Geometric简洁、易用、跨平台通用性强、用户学习成本低,目前已用于研究生课程教学。

机器学习的下一个前沿—量子扩展

译者 | 陈峻审校 | 重楼现如今,机器学习的速度比以往任何时候都快得多,也能够解决那些曾被认为完全无法解决的问题。 将来,在量子计算潜力的驱动下,人工智能(AI)模型会越来越大、越来越强,甚至会超越我们对其训练的工具。 说到模型训练,其计算和能源的消耗成本日趋高启。

终于把机器学习中的特征选择搞懂了!!

特征选择是机器学习中的一个重要过程,通过选择与目标变量最相关的特征,剔除冗余或无关的特征,从而提高模型的性能、减少训练时间,并降低过拟合的风险。 常见的特征选择方法有:过滤方法、包装方法和嵌入方法过滤方法过滤方法是一种基于统计特性和独立于模型的特征选择技术。 它通过计算特征与目标变量之间的相关性或其他统计指标来评估特征的重要性。

终于把机器学习中的类别不平衡搞懂了!!

今天给大家分享机器学习中的一个关键概念,类别不平衡。 类别不平衡指的是在分类问题中,不同类别的数据样本数量相差悬殊的情况。 在机器学习和深度学习的应用中,类别不平衡是一个常见的问题,尤其是在一些实际场景中,某些类别的数据相对较少,而其他类别的数据较多。

AMD与约翰霍普金斯大学联手:AI实验室copilot自动化科研,成本节约84%!

编辑 | 2049科学研究,尤其是机器学习领域的研究,往往需要大量的时间和资源投入,从最初的构思到最终的结果产出,每一步都充满了挑战。 近年来,大型语言模型(Large Language Models,LLMs)在自然语言处理和代码生成方面取得了显著进展,这为自动化科学研究提供了新的可能性。 然而,现有的自动化研究工具通常只能处理单个环节,如文献综述或实验设计,无法实现全流程的自动化。

使用 Teachable Machine 构建图像识别模型

Teachable Machine 是由 Google 开发的一款基于网页的工具,允许任何人在不需要深入了解编程或机器学习的情况下创建机器学习模型。 它的设计易于使用且用户友好,适合初学者、教育工作者,甚至是想要探索人工智能概念的孩子们。 Teachable Machine 支持的模型Teachable Machine 支持以下机器学习模型:图像分类 — 识别图像中的物体音频分类 — 识别声音、语音或其他音频输入姿态分类 — 识别人体姿态或动作要训练模型,您需要为 Teachable Machine 提供自己的数据集,例如图像或录音。

PyTorch Geometric框架下图神经网络的可解释性机制:原理、实现与评估

在机器学习领域存在一个普遍的认知误区,即可解释性与准确性存在对立关系。 这种观点认为可解释模型在复杂度上存在固有限制,因此无法达到最优性能水平,神经网络之所以能够在各个领域占据主导地位,正是因为其超越了人类可理解的范畴。 其实这种观点存在根本性的谬误。

从零开始构建 DINO:自监督视觉 Transformer

DINO模型输出的狗冲刺无标签自蒸馏(DINO)《从几个“补丁”中重建完整图像 | 构建可扩展学习器的掩模自编码器》这边文章讲了如何构建可扩展学习器,这是我对视觉变换器系列的继续,其中我解释了最重要的架构及其从零开始的实现。 自监督学习自监督学习(SSL)是一种机器学习类型,模型通过无需手动标记的示例来学习理解数据。 相反,它从数据本身生成其监督信号。

终于把机器学习中的超参数调优搞懂了!!

今天给大家分享机器学习中一个重要的知识点,超参数调优超参数调优(Hyperparameter Tuning)是机器学习模型开发过程中一个关键步骤,旨在通过调整模型的超参数来优化模型的性能。 超参数不同于模型参数,后者是在训练过程中通过数据学习得到的,而超参数是在训练之前设定的,通常需要通过试验和优化来确定。 什么是超参数超参数是指在训练机器学习模型之前需要人为设定的参数。

图像相似度估计 | 结合三元组损失的暹罗网络

在机器学习领域,确定图像之间的相似度在各种应用中至关重要,从检测重复项到面部识别。 解决这个问题的一个强大方法是使用暹罗网络结合三元组损失函数。 在本文中,我们将探索如何构建和训练暹罗网络以估计图像相似度,并通过一个来自GitHub仓库的实际示例进行说明。

一文读懂 NVIDIA GPU 产品线

Hello folks,我是 Luga,今天我们来聊一下人工智能应用场景中一个至关重要的组成部分:构建高效、灵活的计算架构的基石—NVIDIA GPU 产品线。 在人工智能和深度学习领域,NVIDIA 凭借其强大的 GPU 产品线占据着举足轻重的地位。 NVIDIA 拥有数十款功能各异的 GPU 产品,可用于部署和运行不同规模的机器学习模型,从边缘设备到大规模数据中心,几乎涵盖了所有应用场景。

机器学习|从0开始大模型之模型LoRA训练

1、LoRA是如何实现的? 在深入了解 LoRA 之前,我们先回顾一下一些基本的线性代数概念。 1.1、秩给定矩阵中线性独立的列(或行)的数量,称为矩阵的秩,记为 rank(A) 。

设置机器学习管道的初学者指南

译者 | 陈峻审校 | 重楼不知你是否知晓,构建和运行机器学习(Machine Learning,ML)模型通常是一个虽有益但耗时且复杂的过程。 其中包括:数据准备、特征生成、模型拟合、以及验证和部署等阶段。 更重要的是,随着数据趋势的变化,这些模型需要保持更新。

麻省理工研究人员提高机器学习模型准确性

机器学习(ML)有可能通过利用大量数据进行预测洞察来改变医疗决策。 然而,当这些模型在不能充分代表所有人口群体的数据集上进行训练时,就会出现一个严重挑战。 预测疾病患者治疗计划的模型可以在主要包含男性患者的数据集上进行训练。

数据分布检验利器:通过Q-Q图进行可视化分布诊断、异常检测与预处理优化

在机器学习和数据分析中,我们经常需要验证数据是否符合某种特定的分布(如正态分布)。 这种验证对于选择合适的统计方法和机器学习模型至关重要。 例如许多统计检验和机器学习算法都假设数据服从正态分布。