机器学习
成功率提高四倍,东大、浙师大提出材料合成通用框架,整合 AI、高通量实验和化学先验知识
编辑 | X在过去几年中,数据驱动的机器学习 (ML) 技术已成为设计和发现先进材料的强大工具。然而,由于需要考虑前体、实验条件和反应物的可用性,材料合成通常比性质和结构预测复杂得多,并且很少有计算预测能在实验中实现。为了解决这些挑战,来自东南大学和浙江师范大学的研究团队,提出了一个集成高通量实验、化学先验知识以及子群发现(subgroup discovery)和支持向量机等机器学习技术的通用框架来指导材料的实验合成,能够揭示隐藏在高通量实验中的结构-性质关系,并从广阔的化学空间中快速筛选出具有高合成可行性的材料。
1/9/2024 2:34:00 PM
ScienceAI
以前所未有的精度,预测超重核的衰变模式和半衰期,中山大学团队开发 AI 新方法
编辑 | 白菜叶有关超重区域核素衰变过程的信息对于研究118号元素 Oganesson 和「稳定岛」之外的新元素至关重要。中山大学的研究人员在理解超重核衰变过程方面取得了重大突破。他们提出了应用随机森林算法来研究超重区域不同衰变模式之间的竞争,包括 α 衰变、β-衰变、β 衰变、电子俘获和自发裂变。观察到的半衰期和主要衰变模式得到了很好的再现。该研究以「Random forest-based prediction of decay modes and half-lives of superheavy nuclei」
1/3/2024 2:57:00 PM
ScienceAI
基于ML的运动跟踪:揭示了致病细菌在组织细胞中运动的关系
编辑 | 萝卜皮细菌运动性通常是致病菌的关键毒力因素。研究细菌运动性的常用方法是荧光标记,它可以检测群体或宿主组织中的单个细菌细胞。然而,荧光标记的使用可能会受到蛋白质表达稳定性和/或细菌生理学干扰的阻碍。日本东北大学(Tohoku University)的研究人员将机器学习应用于显微图像分析,以对培养的动物细胞上的人畜共患细菌问号钩端螺旋体进行无标记运动跟踪。该团队使用从人类患者或动物身上分离出的各种钩端螺旋体菌株,以及突变菌株。与严重疾病相关的菌株和缺乏外膜蛋白(OMP)的突变菌株往往表现出快速的移动性和对培养
12/27/2023 4:13:00 PM
ScienceAI
AI揭示微生物暗蛋白:使用机器学习来发现微生物蛋白质宇宙中的功能性「暗物质」
编辑 | 白菜叶宏基因组学项目揭示了地球生物圈中超过 80 亿个非冗余微生物蛋白质序列。其中,11.7 亿种蛋白质在超过 100,000 个可用参考基因组中没有可识别的同源物。了解这些微生物蛋白质的功能是一项艰巨的任务。幸运的是,机器学习最近在复杂生物数据建模和预测方面取得了前所未有的准确性。这些进步的最前沿是基于机器学习的方法,可以自信地预测许多(但不是全部)氨基酸序列的原子级蛋白质结构。最近的一项研究使用 ESMFold 预测器,该预测器利用大型语言模型,从欧洲生物信息学研究所的 MGnify 宏基因组数据库快
12/11/2023 11:31:00 AM
ScienceAI
可直接比较潜在新药的性能,杜克大学团队开发新的药物AI模型
编辑 | 白菜叶目前的分子机器学习模型往往将单个分子作为输入,来预测其生物、化学或物理特性。然而,此类算法需要大型数据集,并且尚未针对预测分子之间的性质差异进行优化,限制了它们从较小数据集学习的能力,也限制了直接比较两个分子预期性质的能力。杜克大学(Duke University)的研究人员开发了 DeepDelta,这是一种成对深度学习方法,可以同时处理两个分子,并学习从小数据集中预测两个分子之间的属性差异。在 10 个 ADMET 基准任务中,DeepDelta 方法显著优于两种已建立的分子机器学习算法:定向消
12/6/2023 2:17:00 PM
ScienceAI
某「新化合物」90年前就有了?伦敦大学学院教授对DeepMind参与的「A-Lab」提出质疑
编辑 | 紫罗上周,Google DeepMind 和加州大学伯克利分校的一组研究人员在《Nature》杂志上发表了一篇备受期待的论文,提出了一个「自主实验室」——A-Lab,旨在利用 AI 和机器人技术加速新材料的发现和合成。被称为「自动驾驶实验室」的 A-Lab 展示了一个雄心勃勃的愿景,即当配备计算建模、机器学习、自动化和自然语言处理方面的最新技术时,人工智能驱动的系统可以在科学研究中实现什么目标。A-Lab 如何工作。(来源:UC Berkeley/Nature)然而,在发表后的几天内,人们开始对论文中提出
12/5/2023 5:00:00 PM
ScienceAI
发现38万种新材料、17天自主合成41种新化合物,DeepMind一日两篇论文登上Nature
编辑 | 萝卜皮从计算机芯片、电池到太阳能电池板等现代技术都依赖于无机晶体。开发这些新技术,所需的晶体必须稳定,否则材料就会分解,而每个新的、稳定的晶体背后可能需要研究人员数月或者更久的艰苦实验。Google DeepMind 材料团队分享了 220 万颗新晶体的发现,相当于近 800 年的知识。该团队推出了新的深度学习工具,用于材料探索的图网络 (GNoME),可通过预测新材料的稳定性来显著提高发现的速度和效率。论文链接: GNoME,科学家可以使人类已知的技术上可行的材料数量成倍增加。在其 220 万个预测中,
11/30/2023 2:19:00 PM
ScienceAI
稳健且准确,AlphaFold 结合两种 AI 方法,实现蛋白质化学位移自动分配
编辑 | 绿萝化学位移分配对于基于核磁共振 (NMR) 的蛋白质结构、动力学和相互作用研究至关重要,可提供重要的原子级见解。然而,获得化学位移分配是劳动密集型的并且需要大量的测量时间。为了解决这一限制,苏黎世联邦理工学院(ETH Zurich)的研究人员之前提出了 ARTINA——一种用于自动分配二维 (2D)–4D NMR 谱的深度学习方法。近日,研究人员提出了一种将 ARTINA 与 AlphaFold 和 UCBShift 相结合的综合方法,能够减少实验数据、提高准确性并增强大型系统的稳健性,从而实现化学位移
11/30/2023 10:11:00 AM
ScienceAI
面对人工智能和深度学习,设计师到底要如何自处?
一键生成广告、插画、布局、视觉稿,这样的技术和产品在某种意义上几乎已经在我们眼前了。
建立一个真正称得上是拥有智能的系统,针对特定受众的需求来生成素材,理解人类的情感和语义中的潜台词,明白行为的概念和美的意义,这仍然还太远。
不过,建立一个专门的深度学习系统,自动化的设计流程,能够让设计师从一部分完全手动的工作中解放出来,这是完全可行的。
实际上已经有很多新兴的设计素材和设计工具在做这个事情了。
比如下面这些以深度学习为驱动力的创新的、自动化设计工具:
Colormind.ioColormind 致力于让色彩理论真
12/17/2018 9:34:28 PM
JONI JUUP
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
模态
字节跳动
Claude
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
科技
亚马逊
智能体
DeepMind
特斯拉