AI在线 AI在线

RAG

RAG检索不过关?试试这些优化策略,精准度飙升!

近来,RAG成了大语言模型的“救命稻草”,可让大语言模型回答更准确、更靠谱。 可问题来了,很多 RAG 应用的检索系统还是有点“笨”:要么漏掉关键信息,要么抓回一堆无关紧要的“噪声”,搞得最终答案质量参差不齐。 那么,我们该怎么优化 RAG 的检索算法,让它既精准又高效呢?
3/27/2025 10:22:02 AM

RAG检索全攻略:Embedding与Rerank模型的终极指南

在构建基于检索增强生成(RAG)的系统时,Embedding Model和Rerank Model扮演着至关重要的角色。 比如你正在搭建一个智能搜索引擎,Embedding Model就像是帮你快速找到相关书籍的“图书管理员”,而Rerank Model则像是一位经验丰富的“资深书评人”,负责从一堆书里精准挑选出最符合你需求的那几本。 两者配合,就像一对完美搭档,确保RAG系统既能找到大量信息,又能精准提炼出最关键的内容。
3/26/2025 11:05:13 AM

腾讯云宣布上线DeepSeek最新版V3模型API接口

3月25日晚,腾讯云宣布率先上线DeepSeek-V3-0324版本模型的API接口,企业和开发者可以通过腾讯云直接调用这一最新版模型,获得稳定且优质的服务。 同时,腾讯云旗下大模型知识引擎也接入了新版DeepSeek-V3模型,通过平台内置的RAG(Retrieval-Augmented Generation)和工作流能力,用户能够快速搭建专属的AI应用。 腾讯云为用户提供了两种使用方式:一是直接在腾讯云官网调用API接口,二是基于大模型知识引擎内置的V3新模型快速搭建应用。
3/26/2025 9:18:00 AM
AI在线

RAG(七)Chain-of-Note:笔记链让检索增强型语言模型更强大!

现有的检索增强型语言模型(Retrieval-Augmented Language Models, RALMs)在处理外部知识时存在一定的局限性。 这些模型有时会因为检索到不相关或不可靠的信息而产生误导性的回答,或者在面对检索信息和模型内在知识的干扰时,无法正确选择使用哪一种知识。 此外,在检索信息不足或完全不存在的情况下,标准的RALMs可能会尝试生成一个答案,即使它们并不具备足够的信息来准确作答。
3/25/2025 10:41:06 AM
Goldma

三种RAG部署方案:自购GPU硬件 vs 大模型一体机 vs 云端GPU

春节以后这一个半月,算了下我前后也做了 20 的企业知识库落地咨询,其中无论是线上还是线下,被问到最多的一个问题是:要快速落地本地部署的知识库,应该购买什么硬件? 要回答这个问题,其实需要明确很多前置定语,自购 GPU 硬件、大模型一体机、以及选择云端 GPU 都有各自适用的情形。 这篇试图说清楚三种部署方式的主要特点对比,并在文末给些选择建议参考。
3/24/2025 1:17:11 PM
韦东东

基于代理知识蒸馏技术克服文档提取和RAG策略失败问题

译者 | 朱先忠审校 | 重楼简介当下,许多生成式AI应用场景仍然围绕检索增强生成(RAG)展开,但始终未能满足用户的期望。 尽管对RAG改进的研究越来越多,甚至在流程中添加了代理技术,但许多解决方案仍然无法返回详尽的结果,遗漏了文档中很少提及的关键信息,需要多次搜索迭代,并且通常难以协调多个文档中的关键主题。 最糟糕的是,许多实现方案仍然依赖于将尽可能多的“相关”信息与详细的系统和用户提示一起塞入模型的上下文窗口。
3/24/2025 8:20:39 AM
朱先忠

RAG(六)大语言模型应用中的分块策略详解

1、分块在不同应用场景的作用语义搜索在语义搜索中,索引一组文档,每个文档包含特定主题的有价值信息。 通过应用有效的分块策略,可以确保搜索结果准确捕捉用户查询的核心。 分块的大小和方式直接影响搜索结果的准确性和相关性:分块过小:可能会丢失上下文信息,导致搜索结果无法准确理解用户查询的意图。
3/21/2025 2:34:17 PM
Goldma

RAG(五)BGE-M3,最流行的开源text embedding模型

项目地址: embedding? Text Embedding 是一种将文本数据映射到高维向量空间的技术,这些向量能够捕捉文本的语义信息。 通过将文本嵌入到向量空间中,我们可以利用向量之间的距离或相似性来衡量文本之间的语义相关性。
3/21/2025 7:00:00 AM
Glodma

详解RAG应用开发幻觉检测利器LettuceDetect​

译者 | 朱先忠审校 | 重楼简介最近,我们团队推出了LettuceDetect框架,这是一款用于检索增强生成(RAG)开发管道的轻量级幻觉检测器。 它是一种基于ModernBERT模型构建的基于编码器的模型,根据MIT许可证发布,带有现成的Python包和预训练模型。 是什么:LettuceDetect是一个标记级检测器,可标记LLM回答中不受支持的片段。
3/19/2025 8:43:17 AM
朱先忠

RAG(四)Adaptive Retrieval --语言模型的信任边界,参数与非参数记忆的有效性研究

大语言模型(LMs)在许多自然语言处理任务上表现优异,但它们在记忆和回忆不太常见或不流行的事实知识方面存在明显的局限性。 并且,当涉及到长尾实体(即那些在网络上讨论较少、出现频率较低的实体)的问题时,LMs 的性能显著下降,并且增加模型规模并不能有效地解决这一问题。 此外,LMs 对于自身知识边界的认识有限,有时会产生幻觉,即生成看似合理但实际上错误的信息。
3/17/2025 12:52:44 PM
Glodma

RAG(三)GraphRAG进阶:GraphReader-- 基于图的Agent,让大模型“读懂”长文本

上一篇论文介绍了GraphRAG,今天来看一篇算是其进阶版的方法--GraphReader。 对于其研究动机,简单来说,LLMs具有强大的规划和反思能力,但在解决复杂任务时,如函数调用或知识图谱问答(KGQA),以及面对需要多次推理步骤的问题时,仍然面临困难。 特别是当涉及到长文本或多文档的处理时,现有的方法往往难以充分利用这些模型的能力来捕捉全局信息,并有效地进行决策。
3/13/2025 12:24:34 PM
Glodma

RAGFlow自动化脚本套件:自定义解析+回答质量评估+参数自动调优

最近 MCP(大模型上下文协议)比较火,花了点时间研究了下和 RAG 的协作架构,后续整理出心得后再发出。 言归正传,之前文章里详细介绍了 RAGFlow 的 Python api 用法,今天结合几篇法律法规文档来给大家做个简单演示,抛砖引玉。 这篇主要介绍三个脚本示例,分别是:数据处理与系统配置,系统测试,参数优化脚本。
3/13/2025 11:29:03 AM
韦东东

手搓RAG新增功能:递归检索与迭代查询+重回成熟框架API

在上那篇提到的我手搓的那个 RAG 项目新增功能中,漏掉了递归检索与迭代查询,这篇补上(源码见知识星球)。 经过初步调试对召回效果有明显提升,这种方法解决了传统 RAG 的几个关键问题:处理复杂多步骤问题:通过多次迭代,分解复杂问题信息不足的补充:当初始检索结果不足以回答问题时,自动生成补充查询多角度信息收集:能够从不同角度收集相关信息1、递归检索具体实现递归检索函数(recursive_retrieval)(支持最多三次迭代查询)每次迭代使用混合检索(向量检索 BM25)获取信息使用 LLM 分析当前检索结果,判断是否需要进一步查询如果需要,LLM 会生成新的查询问题,用于下一轮检索换句话说,递归检索的工作原理可以理解为"先检索-后思考-再检索"的过程,模拟了人解决问题的方式:先获取一些信息,思考下是否足够,如果不够则继续查找更多相关信息。 总之,好的结果不是一蹴而就的。
3/10/2025 9:20:00 AM
韦东东

现在的AI Agent还是这么差!

编辑 | 言征出品 | 51CTO技术栈(微信号:blog51cto)背景是这样的。 前几天,我发现我的XX激光雷达出了问题。 本来我靠它来为电影摄像机增加自动对焦和自动跟踪功能,如果没有这项功能,我会很难拍摄到我需要的画面。
3/5/2025 6:45:26 PM
言征

没有捷径:RAG入门不推荐直接使用成熟框架

春节期间我在 Github 开源的 RAG 项目目前已经攒了 134 个 Star,盲猜可能也是因为最开始用的就是 Ollama 本地部署 DeepSeek-r1:7b 的方案,年后当本地部署知识库和 deepseek火了起来之后,被动蹭了一波流量。 1、为什么重复造轮子? 但是,在过去的一个月时间里也收到了很多网友的私信,询问关于为什么市面上已经有了类似 AnythingLLM、Cherry Studio、Dify、RAGFlow 等成熟的开源框架,还要重复造轮子去编一个不是很好用的 RAG 项目。
3/4/2025 11:01:00 AM
韦东东

企业实施RAG过程中:常见误解与澄清,内含项目升级预告

春节之后的一个月的时间内,微信和小红书上数了下大概有 150 多个过来咨询 RAG 在企业落地的网友,一路聊下来按照对方的诉求大概分为三类,第一种是最多的就是年后返工公司领导让落地 RAG,但是一时没有头绪的过来咨询的;第二种是看过我公众号上的相关案例后,想外包给我来做具体实施的;第三种有点出乎意料的是,相关的媒体来交流行业观察的。 第一种类型也是最开始比较多的,最初我也是问啥答啥,但是大概聊了五六个之后发现情况有点不对,大部分其实是比较基础的问题,或者我认为问大模型能比问我更快扫盲的,再加上后来确实肉眼可见的人在变多,我索性和每个人说如果是咨询的话 200 块每小时(现在涨到了 500),这样就大部分人就索性不问了,虽说前后也是有十几个人很干脆的问完问题后直接发了红包,不过不得不说收费确实是个很好的互相筛选。 以上是碎碎念,言归正传,这篇给大家介绍下我目前几个项目实践踩坑过程中总结出的些经验。
3/4/2025 10:53:59 AM
韦东东

一文读懂大模型 RAG:检索、增强与生成的技术详解

大模型(Large Language Model,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分领域时,通用大模型往往面临专业知识不足的问题。 相对于成本昂贵的“Post-Training”或“Supervised Fine-Tuning”(监督微调,SFT),基于RAG的技术方案成为了一种更优选择。 本文笔者将从RAG所解决的问题及模拟场景入手,详细总结相关技术细节,与大家分享~一、初识:RAG所解决的问题及模拟场景1.
3/4/2025 9:10:00 AM
小喵学AI

阿里通义实验室开源视觉文档RAG系统ViDoRAG,准确率达79.4%

近日,阿里巴巴通义实验室宣布开源其最新研发成果——ViDoRAG,这是一款专为视觉文档理解设计的检索增强生成(RAG)系统。 ViDoRAG在GPT-4o模型上的测试显示,其准确率达到了令人瞩目的79.4%,相较传统RAG系统提升了10%以上。 这一突破标志着视觉文档处理领域迈出了重要一步,为人工智能在复杂文档理解上的应用提供了新的可能性。
3/3/2025 4:29:00 PM
AI在线