RAG
理解 RAG 第四部分:检索增强生成评估框架
检索增强生成(RAG) 在扩展独立大型语言模型(LLM)的局限性和克服其诸多限制方面发挥了关键作用。 通过整合检索器,RAG 增强了响应的相关性和事实准确性:它只需实时利用外部知识源(例如矢量文档库),并在原始用户查询或提示中添加相关的上下文信息,然后将其传递给 LLM 进行输出生成。 对于那些深入 RAG 领域的人来说,一个自然而然的问题出现了:我们如何评估这些远非简单的系统?
4/27/2025 12:30:00 AM
晓晓
揭秘 RAG:为什么说它是让大语言模型(LLM)更聪明的秘密武器?
现在人工智能(AI)很火,尤其是像 ChatGPT 这样的大语言模型(LLM),它们能聊天、写文章、写代码,感觉无所不能。 但有时候,它们也会犯一些小错误,比如信息过时了,或者一本正经地胡说八道(这叫“幻觉”),或者你问它一些你们公司内部的事情,它就完全不知道了。 为了解决这些问题,科学家们想出了一个聪明的办法,叫做RAG。
4/25/2025 10:03:12 AM
用户007
理解 RAG 第三部分:融合检索与重新排序
我们之前介绍了什么是 RAG、它在大型语言模型 (LLM) 中的重要性,以及 RAG 的经典检索器、生成器系统是什么样的,本系列的第三篇文章探讨了一种构建 RAG 系统的升级方法:融合检索。 在深入探讨之前,值得简要回顾一下我们在本系列第二部分中探讨过的基本 RAG 方案。 融合检索解析融合检索方法涉及在检索增强生成(RAG)系统的检索阶段中融合或聚合多个信息流。
4/24/2025 9:04:42 AM
晓晓
理解 RAG 第二部分:经典 RAG 的工作原理
在本系列的第一篇文章中,我们介绍了检索增强生成 (RAG) ,并解释了扩展传统大型语言模型 (LLM)功能的必要性。 我们还简要概述了 RAG 的核心思想:从外部知识库中检索上下文相关的信息,以确保 LLM 生成准确且最新的信息,而不会产生幻觉,也无需不断地重新训练模型。 本系列的第二篇文章将揭秘传统 RAG 系统运行的机制。
4/24/2025 1:10:00 AM
晓晓
理解 RAG 第一部分:为什么需要它
自然语言处理(NLP) 是人工智能(AI)的一个领域,旨在教会计算机理解人类的书面和口头语言,并运用这些语言与人类互动。 虽然传统的 NLP 方法已研究数十年,但近年来出现的大型语言模型(LLM) 几乎主导了该领域的所有发展。 LLM 通过将复杂的深度学习架构与能够分析语言中复杂模式和相互依赖关系的自注意力机制相结合,彻底改变了 NLP 和整个人工智能领域。
4/24/2025 12:10:00 AM
晓晓
少即是多:为什么文档检索量低反而会提高答案质量
译者 | 核子可乐审校 | 重楼检索增强生成(RAG)是一种将语言模型与外部知识源结合的AI系统构建方法。 简单来说,AI会先搜索与用户查询相关的文档(如文章或网页),然后利用这些文档生成更准确的答案。 这种方法因能帮助大语言模型(LLM)扎根真实数据、减少虚构信息而受到推崇。
4/23/2025 8:14:41 AM
核子可乐
MinerU部署实践:从零开始搭建你的专属PDF解析服务
在多模态RAG(Retrieval-Augmented Generation)系统中,PDF文件的高效、安全解析与处理是实现高质量知识检索和生成的关键环节。 PDF文件通常包含丰富的文本、图像和表格信息,这些多模态数据的有效提取和整合对于提升RAG系统的性能至关重要。 然而,传统的PDF解析工具往往存在解析精度不足、无法处理复杂格式(如图像和表格)等问题,尤其是在涉及私密文档时,数据安全和隐私保护也是一大挑战。
4/23/2025 3:00:00 AM
Goldma
RAG增强系统Node:AI检索革命,效率飙升30%!
随着生成式人工智能技术的飞速发展,检索增强生成(Retrieval-Augmented Generation, RAG)系统正成为提升大语言模型(LLM)准确性和上下文相关性的关键技术。 近日,一款名为NodeRAG的创新RAG增强系统引起了业界广泛关注,其独特的异构图结构为RAG工作流带来了革命性突破。 NodeRAG:异构图驱动的RAG新范式NodeRAG是一个以图结构为核心的RAG框架,通过引入异构图(Heterogeneous Graph)技术,将文档分解信息与大语言模型提取的洞察力统一为图中的节点。
4/22/2025 2:00:41 PM
AI在线
万字拆解!最新多模态 RAG 技术全景解析!
来自华为云的最新多模态RAG综述,非常全面,对多模态RAG感兴趣的朋友强烈推荐! 复制1、引言传统的RAG系统主要依赖于文本数据,通过检索与查询语义相似的相关文档片段,并将其与查询结合,形成增强的输入,供LLMs生成回答。 这种方法使得LLMs能够在推理阶段动态整合最新信息,从而提高回答的准确性和可靠性。
4/22/2025 7:00:00 AM
Goldma
Cohere在微软Azure AI Foundry推出两款新模型,助力RAG与智能体AI工作流优化
近日,Cohere在微软Azure AI Foundry平台上推出了两款全新模型——Command A和Embed 4,为企业级RAG(检索增强生成)和智能体AI工作流带来显著提升。 这两款模型以其生产就绪和高开发友好性,广泛适用于智能文档问答、企业级Copilot以及可扩展的搜索应用场景。 Command A:驱动智能体AI的高效引擎Command A是Cohere专为智能体AI工作流设计的大型语言模型(LLM),能够无缝集成到复杂的企业应用中。
4/21/2025 12:00:57 PM
AI在线
打破LLM的语境障碍:InfiniRetri vs RAG
译者 | 晶颜审校 | 重楼大型语言模型(LLM)正在重塑人工智能的格局,然其亦面临一项持续性挑战——检索和利用超出其训练数据的信息。 目前,有两种模式相左的方法可以解决这个问题:其一为InfiniRetri,该方法借助LLM自身的注意力机制,从长输入中检索相关上下文;其二是检索增强生成(RAG),它在生成响应前,动态地从结构化数据库获取外部知识。 每种方法都有其独特的优势、局限性和权衡之处。
4/21/2025 8:11:09 AM
晶颜
谈谈 RAG 的四个级别
选择正确的 RAG(检索增强生成)架构主要取决于具体的用例和实施要求,确保系统符合任务需求。 Agentic RAG 的重要性将日益增加,与Agentic X的概念相一致,其中代理能力嵌入个人助理和工作流程中。 这里的“X”代表代理系统的无限适应性,能够实现无缝任务自动化和跨不同环境的明智决策,从而提高组织效率和自主性。
4/21/2025 6:25:00 AM
晓晓
企业级RAG选择难题:数据方案的关键博弈
智能时代,企业数据每日剧增。 员工寻找答案的效率直接影响工作流程,StackOverflow调查表明54%的开发者因等待问题答案而工作中断。 信息就在那里,却被深埋在企业资源迷宫中。
4/21/2025 4:50:00 AM
大数据AI智能圈
告别SQL!四大技术重构数据查询:Text2SQL/RAG/TAG/MCP谁主沉浮?
想象这样的场景:市场部新来的实习生对咖啡机说:“帮我查华东区过去半年销量TOP3的爆款饮品,按周环比增长率排序。 ”系统秒速生成动态报表——这不再是科幻片桥段,而是自然语言查询技术带来的现实革命。 随着大模型突破性发展,企业数据正从“程序员黑箱”迈向“全员可探”的新纪元。
4/21/2025 4:10:00 AM
推推君
AI 与非结构化数据:简单 RAG 的局限及生产级解决方案全解析
非结构化数据涵盖了电子邮件、PDF 文件、会议记录等多种形式,它们充斥在各个角落,却由于缺乏固定的格式,给传统的数据处理工具带来了巨大的挑战。 而人工智能(AI)的出现,尤其是大型语言模型(LLMs),为解决非结构化数据的难题带来了新的希望。 但在实际应用中,简单的检索增强生成(RAG)方法却存在诸多不足,无法满足复杂的生产级场景需求。
4/18/2025 2:55:00 AM
大模型之路
一文读懂 Agentic RAG 技术点滴
大型语言模型(Large Language Models, LLMs)彻底改变了我们与信息的交互方式。 然而,LLMs 完全依赖内部知识的局限性,常常限制了其在处理复杂问题时的准确性和深度。 正是在这一背景下,检索增强生成(Retrieval-Augmented Generation, RAG)应运而生。
4/10/2025 12:12:00 AM
Luga Lee
RAG还是微调?AI落地的关键选择
你是否曾经面临这样的困境:部门刚刚决定采用大语言模型解决业务痛点,但技术团队却陷入了"到底该用RAG还是微调"的激烈争论中? 一边是成本控制派,坚持RAG轻量级方案;另一边是性能至上派,认为只有微调才能满足业务需求。 让我们跳出技术视角,用真实业务场景来理解这两种方案。
4/9/2025 11:59:29 AM
大数据AI智能圈
AI问答的核心!知识图谱:突破传统 RAG 的天花板
看似简单的 AI 问答系统,背后却隐藏着无数技术难题。 当我们询问"组件 A 与组件 B 有什么区别"这样的问题时,传统检索增强生成(RAG)系统往往会犯难。 它们就像只会做加法的计算器,遇到了需要乘除法的复杂方程...传统 RAG 的三大痛点传统 RAG 技术已成为 AI 应用的标配,但它面临三个根本性挑战:信息孤岛:文档被切分成互不相关的小块,丢失了上下文联系视野局限:只能基于文本相似度检索,无法理解概念间的逻辑关系推理能力缺失:无法像人类那样进行跨文档的综合分析例如,你问系统:"A组件和B组件有什么区别?
4/8/2025 3:45:00 AM
大数据AI智能圈
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
马斯克
智能体
AI创作
Anthropic
英伟达
论文
AI新词
代码
训练
算法
Stable Diffusion
LLM
芯片
蛋白质
腾讯
开发者
Claude
苹果
生成式
AI for Science
Agent
神经网络
3D
机器学习
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
GPU
工具
华为
RAG
AI设计
大语言模型
搜索
字节跳动
具身智能
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
神器推荐
亚马逊
Copilot
特斯拉
应用
DeepMind