RAG
理解 RAG 第九部分:针对 RAG 微调 LLM
在“理解 RAG”系列的前几篇文章中,我们重点探讨了检索增强生成的各个方面。 文章中,我们重点介绍了与大型语言模型 (LLM) 集成的检索器组件,该组件用于检索有意义且真实的上下文知识,从而提升 LLM 输入的质量,并最终提升其生成的输出响应。 具体来说,我们学习了如何管理传递给 LLM 的上下文长度、如何优化检索,以及如何利用向量数据库和索引策略来有效地检索知识。
5/20/2025 6:00:00 AM
晓晓
基于Bad Cases的Dify合同审查案例演示(工作流拆解)
4月底时,知识星球里有个关于在 RAG 流程中,如何实现基于 Bad Cases(负面案例)的合同审查和合同生成(基于合同模板)的提问,算是一个很有代表性的进阶 RAG 应用方向,这篇针对其中的合同审查场景来做些介绍和演示。 注:“整体文档理解”(Bad Cases 分析)和“结构化对象检索”(模板匹配)合同审查场景里,利用历史上的“坏案例”(Bad Cases,包含合同原文和审查结果)来辅助新合同的审查,而不仅仅依赖预设规则是个很实际的业务需求。 但标准 RAG 主要召回与问题语义相似的片段,确实很难让 LLM 理解一个 Bad Cases 的整体情况和参考价值。
5/20/2025 4:00:00 AM
北邮港大联手!LightRAG:图结构赋能的高效检索增强生成新范式
现有 RAG 系统在处理复杂查询时力不从心。 一方面,它们依赖扁平的数据表示,无法有效捕捉实体间的复杂关系;另一方面,缺乏上下文感知能力,导致生成的回答碎片化,难以形成连贯的逻辑。 例如,当用户询问 “电动汽车的兴起如何影响城市空气质量和公共交通基础设施?
5/19/2025 6:03:15 PM
Goldma
RAG架构综述:探寻最适配RAG方案
RAG技术通过整合外部知识源检索与模型生成能力,使语言模型能够基于真实世界的信息生成更准确、可靠的回答。 如今,RAG技术不断演进,衍生出了多种各具特色的架构类型,每种都针对特定场景和需求进行了优化。 深入了解这些不同类型的RAG架构,对于开发者、数据科学家以及AI爱好者而言至关重要,能够帮助他们在项目中做出更合适的技术选型,充分发挥RAG的优势。
5/19/2025 8:26:37 AM
大模型之路
“逆天”研究!Cursor 与 Windsurf 背后的核心算法机制曝光!网友惊呼:Cursor代码总出Bug的原因找到了
编辑 | 云昭出品 | 51CTO技术栈(微信号:blog51cto)Vibe coding正火得一塌糊涂,但谁能想到,刚刚一位大佬已经把当红的AI编程神器Cursor和Windsurf背后的核心算法机制研究出来了! 今天凌晨,一位名为Nir Diamant的技术大牛发表了一篇高质量神文,可以说把Cursor和Windsurf的核心算法说得非常透彻,就像玩抖音的需要了解抖音推荐算法一样,正在Vibe Coding的我们,当然也得快速吃透跟自己对话的编程助手,究竟是怎样一个思维回路。 非常细节,值得各位收藏细读一番。
5/14/2025 4:39:21 PM
云昭
探索RAG数据分块策略:工具对比与实践指南(含code)
在检索增强生成(Retrieval-Augmented Generation, RAG)应用领域,数据分块作为关键预处理步骤,对模型性能和效果起着决定性作用。 本文深入探讨RAG应用中的数据分块策略,详细介绍和对比LangChain、LlamaIndex和Preprocess三种主流工具在数据分块方面的功能与特点,并结合实际案例分析其应用效果,为读者提供全面的技术指引。 RAG中数据分块的重要性RAG通过检索相关信息来增强语言模型的生成能力,数据分块则是优化这一过程的关键。
5/14/2025 1:40:00 AM
大模型之路
通用RAG:通过路由模块对多源异构知识库检索生成问答思路
如何在多个语料库(多源异构知识库,如:文本、图片、视频)中检索和整合来自不同模态和粒度的知识? UniversalRAG:一个多模态RAG框架,用于从多个模态和粒度的语料库中检索和整合知识。 下面来看看思路,供参考。
5/14/2025 12:23:00 AM
余俊晖
RAG知识库只是表面简单!
你有没有想过,为什么同样是AI问答系统,有些答案精准如手术刀,有些却像老人家的唠叨? 当我们说"把文档丢进Dify就能搞定RAG"时,工程师们默默翻了个白眼——因为他们知道,真正的魔法发生在幕后。 RAG:表面简单,内核复杂前几天,产品经理小张兴冲冲地来找我:"我发现了个神器叫Dify,听说只要把公司文档灌进去,就能搭建一个智能客服。
5/9/2025 9:13:37 AM
大数据AI智能圈
告别碎片化!两大先进分块技术如何提升RAG的语义连贯性?
研究动机论文核心问题及研究背景分析1. 研究领域及其重要性研究领域:检索增强生成(Retrieval-Augmented Generation, RAG)系统,结合自然语言处理(NLP)与信息检索技术。 重要性:RAG通过动态整合外部知识,解决了传统大语言模型(LLMs)依赖静态预训练数据的局限性。
5/9/2025 3:55:00 AM
ChallengeHub
从RAG到QA-RAG:整合生成式AI以用于药品监管合规流程
图片引言聊天机器人的进步近期生成式AI的进展显著增强了聊天机器人的能力。 这些由生成式人工智能驱动的聊天机器人在各个行业中的应用正在被探索[Bahrini等人,2023年;Castelvecchi,2023年;Badini等人,2023年],其中制药行业是一个显著的关注领域。 在药物发现领域,最近的研究表明,由生成式人工智能驱动的聊天机器人在推进药物发现方面可以发挥重要作用[Wang等人,2023年;Savage,2023年;Bran等人,2023年]。
5/8/2025 2:22:00 AM
Wolfgang
RAG技术:优化知识库,解决AI答非所问
在AI大模型席卷全球的今天,Retrieval-Augmented Generation(RAG,检索增强生成)作为一种融合检索与生成的技术,正成为企业和开发者提升AI能力的核心工具。 然而,许多用户在使用RAG时却发现,AI的回答常常“答非所问”,甚至“驴唇不对马嘴”。 究其原因,问题往往出在文档处理不当。
5/8/2025 1:00:00 AM
贝塔街的万事屋
RAG 中的语义分块:实现更优的上下文检索
检索增强生成(RAG)技术异军突起,席卷了整个大语言模型领域。 通过将大语言模型(LLMs)的强大能力与外部知识检索相结合,RAG使得模型能够生成准确且有依据的回复,即便在专业领域也不例外。 在每一个表现卓越的RAG流程背后,都有一个默默发挥关键作用的 “英雄”:分块技术,尤其是语义分块。
5/7/2025 8:35:11 AM
大模型之路
五种RAG分块策略详解 + LlamaIndex代码演示
先前文章中提到,不断优化原始文档解析和分块策略是控制变量法下,是提高最后检索效果天花板的务实做法,前面已经介绍了 MinerU vs DeepDoc 在文档解析方面的效果对比。 MinerU vs DeepDoc:集成方案 图片显示优化关于文档解析部分简单的结论是,MinerU 无疑是值得关注和尝试的一个文档解析框架,但具体效果还要结合特定项目文档做仔细横评。 我目前在常规项目中,主要是对照使用 DeepDoc 和 MinerU 两个方法。
5/6/2025 10:05:23 AM
韦东东
如何选择Embedding Model?关于嵌入模型的十个思考
在大模型应用中,尤其基于RAG框架的大模型应用,嵌入模型(embedding Model)是不可或缺的关键组件。 这里总结了笔者在实践中关于潜入模型的10个思考,希望对大家有所帮助。 嵌入模型在RAG中的重要性嵌入模型能够将文本转换成数值形式的向量,这让计算机可以更高效地处理、对比和检索信息。
5/6/2025 8:51:37 AM
曹洪伟
理解 RAG 第七部分 矢量数据库和索引策略
在 RAG 系统中高效检索知识是提供准确及时响应的关键。 矢量数据库和索引策略在增强 RAG 系统性能方面发挥着至关重要的作用。 本文延续“理解 RAG”系列文章,概念化 RAG 系统中常用的矢量数据库和索引技术。
4/29/2025 9:22:17 AM
晓晓
Adaptive-RAG:让检索增强生成更智能
在人工智能领域,检索增强生成(Retrieval-Augmented Generation,RAG)一直是研究热点。 它通过结合检索和生成技术,为问答系统带来了更强大的性能。 然而,现有的RAG方法并非完美无缺。
4/29/2025 8:20:51 AM
Goldma
理解 RAG 第五部分:管理上下文长度
传统的大型语言模型 (LLM)存在上下文长度限制,这限制了单次用户与模型交互中处理的信息量,这是其主要局限性之一。 解决这一限制一直是 LLM 开发社区的主要工作方向之一,提高了人们对增加上下文长度在生成更连贯、更准确响应方面优势的认识。 例如,2020 年发布的 GPT-3 上下文长度为 2048 个 token,而其更年轻但功能更强大的兄弟 GPT-4 Turbo(诞生于 2023 年)允许在单个提示中处理高达 128K 个 token。
4/28/2025 9:02:14 AM
蚂蚁OceanBase 发布全员信:CTO杨传辉担任AI一号位 瞄准AI数据底座
蚂蚁集团旗下分布式数据库OceanBase今日宣布了一项重大人才和组织体系升级,旨在全力保障公司AI战略的高效落地。 OceanBase CEO杨冰在全员信中透露了这一决定。 根据全员信内容,OceanBase CTO杨传辉将担任公司AI战略的“一号位”,全面统筹AI战略的制定以及相关技术和产品的落地实施。
4/27/2025 3:00:38 PM
AI在线
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
马斯克
智能体
AI创作
Anthropic
英伟达
论文
AI新词
代码
训练
算法
Stable Diffusion
LLM
芯片
蛋白质
腾讯
开发者
Claude
苹果
生成式
AI for Science
Agent
神经网络
3D
机器学习
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
GPU
工具
华为
RAG
AI设计
大语言模型
搜索
字节跳动
具身智能
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
神器推荐
亚马逊
Copilot
特斯拉
应用
DeepMind