AI在线 AI在线

NeurIPS 2025

NIPS2025|小红书智创AIGC团队提出布局控制生成新算法InstanceAssemble

当下的文本生成图像扩散模型取得了长足进展,为图像生成引入布局控制(Layout-to-Image, L2I)成为可能。 然而,现有布局到图像生成方法在复杂场景下表现仍不理想:一方面,如何精确对齐给定布局并同时保持高画质是巨大挑战;另一方面,在扩散生成的逐步去噪过程中确保每个目标的位置与语义属性不偏离也极为困难。 此外,布局控制往往需要支持多模态条件(如文本、参考图等信息),这进一步增加了技术复杂度。
11/3/2025 4:59:00 PM
机器之心

一站看尽NeurIPS 2025前沿成果,11月22日北京见!

2025 年开始进入尾声,但 AI 领域发展势头依旧势不可挡。 从自主智能体到视频生成模型,再到世界模型与推理架构的持续演化,人工智能正以前所未有的速度扩展能力边界。 技术革新速度快得令人目不暇接:新框架、算法、模型接连登场,科研社区与产业界的讨论也愈发活跃。
10/30/2025 7:48:00 PM
机器之心

NeurIPS 2025 | 当AI理解几何:ETHz提出GAOT,让神经算子在任意形状上实现高效可扩展的PDE求解

作者 | 论文团队编辑 | ScienceAI想象一下,如果 AI 能真正理解复杂几何的形状,并快速预测其中的物理场分布 —— 无论是汽车外壳的气流走向,还是飞机机翼上的压力变化,都能在几秒内被准确模拟,而不再依赖昂贵的数值仿真。 这正是 Geometry Aware Operator Transformer(GAOT)所尝试实现的目标。 该研究由 ETH Zurich 与 CMU 合作完成,并被 NeurIPS 2025 正式接收。
10/30/2025 1:19:00 PM
ScienceAI

NeurIPS 2025|VFMTok: Visual Foundation Models驱动的Tokenizer时代来临

视觉 Tokenizer 的困境与破局近年来,自回归(Autoregressive, AR)模型在语言生成领域的成功激发了其在图像生成领域的应用,涌现出 DALL-E、Parti、VAR 和 LlamaGen 等代表性工作。 这类技术高度依赖于 VQGAN 等视觉 Tokenizer,它负责将高维、冗余的像素空间映射到一个低维、紧凑的离散潜在空间,是决定生成模型上限的基石。 然而,以 VQGAN 为代表的传统 Tokenizer 通常需要从零开始训练,其训练目标由像素级重建损失函数主导,导致其产生的潜在空间:富含低层细节特征却缺乏高层语义信息:能很好地还原图像细节,但潜在编码本身缺乏高层语义信息。
10/28/2025 5:54:00 PM
机器之心

NeurIPS 2025 | 北大联合小红书提出Uni-Instruct:ImageNet单步生图FID进入1.0时代!

近年来,单步扩散模型因其出色的生成性能和极高的推理效率,在图像生成、文本到视频、图像编辑等领域大放异彩。 目前主流的训练方法是通过知识蒸馏,最小化学生模型与教师扩散模型之间的分布差异。 然而,现有的方法主要集中在两条平行的理论技术路线上:基于 KL 散度最小化的方法(如 Diff-Instruct[1],DMD[2] 等):收敛速度快,但可能存在模式崩溃问题,进而导致生成性能差。
10/28/2025 2:36:00 PM
机器之心

NeurIPS25高分论文|以判别式监督学习强化推理LLM,解决难度偏差和熵崩塌难题

作者介绍:德州农工大学博士生李港,专注于设计和应用高效算法到大规模机器学习和人工智能任务,包括增强大型基础模型的后训练算法、对抗性鲁棒学习算法和分布鲁棒性学习算法。 曾发表数篇论文在 NeurIPS、ICML、KDD 等顶会, 并作为主要贡献者之一发布了针对不平衡分类任务的知名软件包 LibAUC。 DeepSeek-R1 的成功吸引了人们对群体相对策略优化(GRPO)作为大型推理模型(LRM)强化学习方法的广泛关注。
10/26/2025 7:04:00 PM
机器之心

NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

作者为北京航空航天大学的肖宜松,刘艾杉,应宗浩,刘祥龙,新加坡国立大学的梁思源,新加坡南洋理工大学的陶大程。 本文已被 NeurIPS 2025 录用。 LLM 已在智能创作、企业服务等领域广泛应用,但其内容安全问题仍是落地过程中的关键挑战。
10/25/2025 10:54:00 PM
机器之心

NeurIPS 2025 | 当分子拥有「视觉」:湖南大学提出S²VM,让AI读懂药物之间的化学默契

作者 | 论文团队编辑 | ScienceAI想象一下,如果 AI 能拥有一位资深化学家的「化学直觉」—— 不仅能预测药物间的相互作用,更能「看见」分子结构中那些决定其相互作用的微妙联系,甚至揭示出那些沉睡在未知化学空间中的潜在互动,那将是怎样一番景象? 然而,理想与现实之间存在着巨大的鸿沟。 一直以来,AI 学习药物相互作用的方式存在一个根本性的瓶颈:它严重依赖于已知的、有标记的药物对数据。
10/23/2025 2:19:00 PM
ScienceAI

NeurIPS 2025 | CMU、清华、UTAustin开源ReinFlow,用在线RL微调机器人流匹配策略

作者简介:本文第一作者为卡耐基梅隆大学机器人所研究生 Tonghe Zhang,主要研究方向为机器人操作大模型和全身控制算法。 合作者为德克萨斯大学奥斯汀分校博士生 Sichang Su, 研究方向为强化学习和通用机器人策略。 指导教师是清华大学和北京中关村学院的 Chao Yu 教授以及清华大学 Yu Wang 教授。
10/20/2025 5:44:00 PM
机器之心

首个多轮LLM Router问世, Router-R1可让大模型学会「思考–路由–聚合」

Haozhen Zhang 现为南洋理工大学(NTU)博士一年级学生,本工作完成于其在伊利诺伊大学厄巴纳-香槟分校(UIUC)实习期间。 Tao Feng 为 UIUC 博士二年级学生,Jiaxuan You 为 UIUC 计算机系助理教授。 团队长期聚焦 LLM Router 方向,已产出 GraphRouter、FusionFactory 及本文 Router-R1 等多项代表性研究成果。
10/15/2025 7:04:00 PM
机器之心

NeurIPS 25 | 中大&UC Merced等开源RAPID Hand,重新定义多指灵巧手数据采集

在最近的一篇 NeurIPS 25 中稿论文中,来自中山大学、加州大学 Merced 分校、中科院自动化研究所、诚橙动力的研究者联合提出了一个全新开源的高自由度灵巧手平台 — RAPID Hand (Robust, Affordable, Perception-Integrated, Dexterous Hand)。 论文标题:RAPID Hand: A Robust, Affordable, Perception-Integrated, Dexterous Manipulation Platform for Generalist Robot Autonomy论文地址:: 地址:。 无论是日常的家庭整理、物品归置,还是辅助类服务任务,若缺乏灵巧的操作能力,机器人便难以真正完成复杂交互。
10/14/2025 4:36:00 PM
机器之心

NeurIPS 25 | GRPO进阶版来了,GVPO重构大模型后训练范式

大模型后训练(post-training)正在成为 AI 进化的关键一环。 从最早的 SFT(监督微调),再到近来大火的 GRPO,一条核心主线贯穿始终:如何让大模型具有更强的推理能力、更好地对齐人类偏好,同时保持稳定和高效。 然而,GRPO 虽然在 DeepSeek-R1 等项目中大放异彩,但其训练不稳定、超参数敏感的问题一直限制其大规模落地。
10/14/2025 10:27:00 AM
机器之心

RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

在具身智能领域,视觉 - 语言 - 动作(VLA)大模型正展现出巨大潜力,但仍面临一个关键挑战:当前主流的有监督微调(SFT)训练方式,往往让模型在遇到新环境或任务时容易出错,难以真正做到类人般的泛化。 但在大语言模型(LLM/VLM)领域,强化学习(RL)已被证明能显著提升模型的泛化能力。 RL 究竟能为 VLA 带来哪些独特的泛化优势?
10/12/2025 3:44:00 PM
机器之心

NeurIPS 2025 Spotlight | 只需一条演示,DexFlyWheel框架让机器人学会「自我造数据」

当我们谈论机器人灵巧操作时,数据稀缺始终是悬浮在头顶的达摩克利斯之剑。 在大模型、自动驾驶领域纷纷依靠海量数据 “涌现” 出强大能力的今天,机器人灵巧操作依然困在数据瓶颈。 近期,北京大学、哈尔滨工业大学联合 PsiBot 灵初智能提出首个自我增强的灵巧操作数据生成框架 ——DexFlyWheel。
10/9/2025 12:59:00 PM
机器之心

大规模分子电子密度数据集EDBench发布,AI驱动分子建模迈入「电子级」时代

作者 | 论文团队编辑 | ScienceAI在药物设计、新材料开发等领域,精确模拟分子行为至关重要。 传统的机器学习力场将分子视为由原子核和化学键构成的“骨架”,却忽略了真正决定分子性质的“灵魂”——电子。 电子密度,这一量子化学中的核心物理量,描述了电子在空间中的分布概率,从根本上决定了分子的能量、反应活性等所有性质。
10/3/2025 3:14:00 PM
ScienceAI

NeurIPS 2025 | 面向具身场景的生成式渲染器TC-Light来了,代码已开源

TC-Light 是由中科院自动化所张兆翔教授团队研发的生成式渲染器,能够对具身训练任务中复杂和剧烈运动的长视频序列进行逼真的光照与纹理重渲染,同时具备良好的时序一致性和低计算成本开销,使得它能够帮助减少 Sim2Real Gap 以及实现 Real2Real 的数据增强,帮助获得具身智能训练所需的海量高质量数据。 它是如何实现的呢? 本文将为你揭秘 TC-Light 背后的黑科技!
9/25/2025 6:22:00 PM
机器之心

5555被拒稿,AC接收但PC强拒,NeurIPS揭榜引争议

今天,在 X 等社交平台和我们的朋友圈里,NeurIPS 2025 的投稿者们开始晒出自己的论文接收结果。 根据 NeurIPS 2025 发送给投稿研究者的通知邮件,今年该会议主会共收到 21575 篇有效论文投稿,其中 5290 篇被接收,接收率为 24.52%,差不多正好低于 25%,似乎正应了我们之前的报道《NeurIPS 2025:高分论文也可能被拒,只为保住那 25% 左右的接收率? 更进一步,在这 5290 篇被接收的论文中,有 4525 篇是 poster 论文,688 篇为 spotlight 论文,77 篇 oral 论文。
9/19/2025 9:48:00 PM
机器之心

NeurIPS 2025:高分论文也可能被拒,只为保住那25%左右的接收率?

要指标还是更多有价值的论文,顶级学术会议似乎也面临着「to be or not to be」的难题。 NeurIPS 2025 将于 2025 年 12 月 2 日到 7 日在美国圣地亚哥举办,并且首次设置了第二个官方分会场墨西哥城。 最近几天,根据国内外社交媒体的众多反馈,本届 NeurIPS 的 Meta Review(元评审,即多位匿名审稿人提交评审意见后由领域主席或高级审稿人撰写总结性评审)已经陆续完成。
9/1/2025 2:23:00 PM
机器之心