AI
AI 招聘初创 Moonhub 关停:Salesforce 吸纳部分人才
据 TechCrunch 报道,Salesforce 发言人澄清,该公司并非如最初报道那样“收购”了 AI 招聘初创公司 Moonhub。 发言人表示,Moonhub 实际上正在关闭,只有部分团队成员将加入 Salesforce,而非此前 Moonhub 声明中暗示的整个团队。 Moonhub 由前 Meta 工程师 Nancy Xu 于2022年创立,专注于开发利用人工智能技术筛选和招聘人才的工具。
ChatGPT 高级语音模式惊现 “广告插播”!用户质疑服务质量
最近,一名 ChatGPT 的付费用户在使用其高级语音模式时,遇到了让人惊讶的情况。 他原本在与 ChatGPT 讨论寿司的话题,却突然被转入了一段广告宣传,令他目瞪口呆。 根据用户的描述,ChatGPT 在谈话中毫无预兆地开始介绍一种名为 Prolon 的营养计划,并且详细拼读了网址,似乎这段广告是完全不受控制地被植入的。
AI数学能力暴涨100%,自进化直逼RL极限!CMU新作颠覆认知
通往AGI最大的绊脚石,便是互联网数据不够用了! DeepSeek-R1、OpenAI的o系推理模型出世,不再单纯依赖人类标注「标准答案」,而是通过RL实现破局。 但问题来了——当前,LLM依然需要人类设计「正确信号」来指导训练。
微软再放LLM量化大招!原生4bit量化,成本暴减,性能几乎0损失
最近,微软亚研院的研究团队开源了原生1bit精度的大模型:BitNet b1.58 2B4T。 还没过几天,原班人马带着第二代BitNet v2来了! 这次性能几乎0损失,但占用内存和计算成本显著降低!
SFT在帮倒忙?新研究:直接进行强化学习,模型多模态推理上限更高
随着 OpenAI 的 o1/o3 和 Deepseek-R1 等具备强大推理能力的大语言模型相继问世,学界普遍采用「监督微调 强化学习」的两阶段训练范式:先通过推理数据进行监督微调(SFT),再通过强化学习(RL)进一步提升性能。 这种成功模式启发了研究人员将其优势从纯文本领域拓展到视觉 - 语言大模型(LVLM)领域。 但近日的一项研究成果却给出了一个惊人的发现:「SFT 可能会阻碍学习 —— 经常导致出现伪推理路径,而 RL 则是在促进真正的多模态推理!
挑战强化学习后训练霸权!全新无监督方法仅需1条数据+10步优化
无需标注数据、无需繁琐奖励设计,只用10步就能见效——「熵最小化」或许比强化学习更适合大语言模型快速升级。 强化学习(RL)近年来在大语言模型(LLM)的微调中大获成功,但高昂的数据标注成本、复杂的奖励设计和漫长的训练周期,成为制约RL进一步应用的瓶颈。 Ubiquant研究团队提出了一种极为简单有效的无监督方法——One Shot熵最小化(Entropy Minimization,EM),仅用一条无标签数据,训练10步内即可显著提升LLM性能,甚至超过使用成千上万数据的RL方法。
揭开大模型“伪遗忘”,港理工等团队:结构不变就是没忘
近年来,大语言模型(LLMs)的能力突飞猛进,但随之而来的隐私风险也逐渐浮出水面。 训练中暴露的敏感信息往往被模型“记住”,引发广泛关注。 在此背景下,机器遗忘(Machine Unlearning)技术应运而生,目标是在不影响整体能力的前提下,有选择性地抹除特定知识。
Mamba核心作者新作:取代DeepSeek在用的注意力机制,专为推理打造
曾撼动Transformer统治地位的Mamba作者之一Tri Dao,刚刚带来新作——提出两种专为推理“量身定制”的注意力机制。 在保持模型性能不变的情况下,将解码速度和吞吐量最高提升2倍,大大优化了模型的长上下文推理能力。 这项研究的三位作者均来自普林斯顿大学,论文主要有两大贡献:其一,提出Grouped-Tied Attention(GTA),与已集成到LLaMA 3的注意力机制GQA质量相当,但KV缓存用量减少约50%。
SSM+扩散模型,竟造出一种全新的「视频世界模型」
在这个 AI 技术与应用大爆发的时代,我们最不缺的就是「热词」,从自回归到扩散模型,从注意力机制到状态空间模型,从思维链到推理模型…… 有时候,其中一些热词会聚拢一处,为 AI 世界创造出新的可能性。 今天我们要介绍的这项研究便是如此,集齐了长上下文、状态空间模型(SSM)、扩散模型、世界模型等「热词」,创造了一种全新的「视频世界模型」。 该研究来自斯坦福大学、普林斯顿大学和 Adobe Research,在社交网络上引起了不少关注。
北大校友造通用AI Agent,可执行1000个操作,无邀请码立即上手试用
无邀请码,就可直接上手! 北大校友官宣推出号称“最强通用Agent” Fairies(中译仙女),能执行Deep research、代码生成、发邮件等1000个操作。 编辑部的小伙伴一上手实测就发出了如下感叹~关键是无需邀请码,Mac和Windows用户只需下载APP就能立即上手试玩。
UC伯克利新作颠覆认知:LLM靠「自信爆表」学会推理?无需外部奖励超进化
就在刚刚,UC伯克利CS博士后Xuandong Zhao,分享出来自己「今年参与的最鼓舞人心的工作」。 他和同事们发现,在没有外部奖励的情况下,LLM竟然只靠「自信爆棚」,就学会了复杂推理? 论文地址:,竟能学会复杂推理LLM不靠外部奖励,就能自己学会复杂推理,这个结论实在很出乎意料。
Claude团队打开大模型「脑回路」,开源LLM思维可视化工具来了
Claude团队来搞开源了——推出“电路追踪”(circuit tracing)工具,可以帮大伙儿读懂大模型的“脑回路”,追踪其思维过程。 该工具的核心在于生成归因图(attribution graphs),其作用类似于大脑的神经网络示意图,通过可视化模型内部超节点及其连接关系,呈现LLM处理信息的路径。 研究人员通过干预节点激活值,观察模型行为变化,从而验证各节点的功能分工,解码LLM的“决策逻辑”。
函数向量对齐技术,让大模型持续学习不“失忆”丨ICLR 2025
LLMs为什么总是灾难性遗忘? 原来是功能激活在搞怪。 最近来自中国科学技术大学、香港城市大学和浙江大学的联合研究团队,通过对多个语言模型、任务序列和评估指标的系统分析,终于破解了LLMs的灾难性遗忘之谜——遗忘行为具有高度的模型依赖性,而导致遗忘发生的本质却是功能激活的变化。
AI记忆系统首获统一框架!6大操作让大模型拥有人类记忆能力
当AI不再只是“即兴发挥”的对话者,而开始拥有“记忆力”——我们该如何重新定义智能? 来自香港中文大学、爱丁堡大学、香港科技大学与华为爱丁堡研究中心的研究团队联合发布了一项关于AI记忆机制的系统性综述,旨在在大模型时代背景下,重新审视并系统化理解智能体的记忆构建与演化路径。 大语言模型(LLMs)正快速从纯文本生成工具演化为具有长期交互能力的智能体。
GPT-4o-Image仅完成28.9%任务!上海AI实验室等发布图像编辑新基准,360道人类专家严选难题
GPT-4o-Image也只能完成28.9%的任务,图像编辑评测新基准来了! 360个全部由人类专家仔细思考并校对的高质量测试案例,暴露多模态模型在结合推理能力进行图像编辑时的短板。 最近,上海人工智能实验室联手上海交大、同济大学、武汉大学、普林斯顿大学的研究人员,针对图像编辑AI提出了三个问题:现有的图像编辑评测基准是否已经无法跟上时代的步伐?
极低成本,复现GPT-4o图像风格化一致性!NUS推出OmniConsistency
本文由 NUS ShowLab 主导完成。 第一作者宋亦仁为新加坡国立大学 ShowLab@NUS 在读博士生,研究方向是视觉生成和多模态,在 CVPR、SIGGRAPH、NeurIPS 等国际顶级会议上发表多篇研究成果。 共同一作刘成为 NUS 重庆研究院四年级本科生,研究方向是视觉生成。
1/15成本,实现AI水印新SOTA | 南洋理工大学&A*STAR
给AI生成的作品打水印,让AIGC图像可溯源,已经成为行业共识。 问题是,传统水印方法通常把图像当成一个整体处理,全局嵌入、水印提取一锅端,存在不少“短板”:比如,图像局部区域被篡改,就可能导致全局提取失败,也无法定位水印所在具体区域。 又比如,无法只保护某个区域,如人脸、LOGO等。
斯坦福意外用AI生成超强CUDA内核,性能比人类专家优化得还要好!翻倍碾压原生PyTorch,华人主创
好家伙,AI意外生成的内核(kernel),性能比人类专家专门优化过的还要好! 斯坦福最近披露了一组新发现,结果真的太亮眼了。 由AI优化的内核,在常见深度学习操作上,翻倍超越原生PyTorch,性能至多可以提升近400%——矩阵乘法(Matmul,FP32):性能达到PyTorch torch.matmul的101.3%。
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
AI新词
机器人
数据
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
英伟达
马斯克
Anthropic
图像
AI创作
训练
LLM
论文
代码
AI for Science
苹果
算法
腾讯
Agent
Claude
芯片
Stable Diffusion
具身智能
xAI
蛋白质
开发者
人形机器人
生成式
神经网络
机器学习
AI视频
3D
RAG
大语言模型
字节跳动
Sora
百度
研究
GPU
生成
工具
华为
AGI
计算
大型语言模型
AI设计
生成式AI
搜索
视频生成
亚马逊
AI模型
特斯拉
DeepMind
场景
深度学习
Transformer
Copilot
架构
MCP
编程
视觉