大型语言模型
为了创造商业价值,需要充分利用企业的数据和人工智能
尽管人们生活在一个日益数据驱动的世界,但大多数公司并没有采用数据驱动的商业模式。 推动Alphabet、Meta和亚马逊等企业成功的网络效应良性循环,并不适用于销售传统产品和服务的组织。 然而,从日常业务流程生成的专有数据中获取更多信息的工具正在变得广泛可用,并且可以帮助企业开发竞争优势。
11/11/2024 1:29:51 PM
Harris编译
最小化的递归神经网络RNN为Transformer提供了快速高效的替代方案
译者 | 李睿审校 | 重楼Transformer如今已经成为大型语言模型(LLM)和其他序列处理应用程序的主要架构。 然而,它们固有的二次方计算复杂性成为了将Transformer扩展至超长序列时的巨大障碍,显著增加了成本。 这引发了人们对具有线性复杂性和恒定内存需求的架构的兴趣。
11/11/2024 8:11:49 AM
李睿
要创造商业价值,利用AI来利用公司的数据
用专有数据训练大型语言模型能为你带来竞争优势吗?尽管我们生活在一个日益数据驱动的世界中,但大多数公司并未采用数据驱动的商业模式。 像Alphabet、Meta和亚马逊这样的企业凭借网络效应形成的良性循环而取得成功,但这种模式对于销售传统产品和服务的组织来说却难以实现,然而,如今已能广泛获取各种工具来充分利用日常业务流程中生成的专有数据,这些工具可能帮助你的公司形成竞争优势。 随着市场竞争的加剧,利用数据构建防御性护城河至关重要。
11/5/2024 2:45:26 PM
Martin De Saulles
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了显著进展。 这些模型通过在大规模文本数据上进行预训练,能够习得语言的基本特征和语义,从而在各种NLP任务上取得了突破性的表现。 为了将预训练的LLM应用于特定领域或任务,通常需要在领域特定的数据集上对模型进行微调(Fine-tuning)。
11/4/2024 2:42:12 PM
佚名
COLM 24 | 从正确中学习?大模型的自我纠正新视角
Ixiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]
9/17/2024 2:02:00 PM
机器之心
模型融合、混合专家、更小的LLM,几篇论文看懂2024年LLM发展方向
还有 10 个月,2024 年还有很多期待空间。在过去的 2023 年中,大型语言模型(LLM)在潜力和复杂性方面都获得了飞速的发展。展望 2024 年的开源和研究进展,似乎我们即将进入一个可喜的新阶段:在不增大模型规模的前提下让模型变得更好,甚至让模型变得更小。现在,2024 年的第一个月已经过去,也许是时候盘点一番新年首月进展了。近日,AI 研究者 Sebastian Raschka 发布了一份报告,介绍了四篇与上述新阶段有关的重要论文。它们的研究主题简单总结起来是这样:1. 权重平均和模型融合可将多个 LLM
2/22/2024 10:49:00 AM
机器之心
五种资源类别,如何提高大语言模型的资源效率,超详细综述来了
本综述深入探讨了大型语言模型的资源高效化问题。近年来,大型语言模型(LLM)如 OpenAI 的 GPT-3 在人工智能领域取得了显著进展。这些模型,具有庞大的参数量(例如 1750 亿个参数),在复杂度和能力上实现了飞跃。随着 LLM 的发展趋势朝着不断增大的模型规模前进,这些模型在从智能聊天机器人到复杂数据分析,乃至于多领域研究中的应用越发广泛。然而,模型规模的指数级增长带来了巨大的资源需求,尤其是在计算、能源和内存等方面。这些资源的巨大需求使得训练或部署这样庞大的模型成本高昂,尤其是在资源受限的环境(如学术实
1/15/2024 11:22:00 AM
机器之心
大模型幻觉问题无解?理论证明校准的LM必然会出现幻觉
理论证明!校准的语言模型必然出现幻觉。大型语言模型(LLM)虽然在诸多下游任务上展现出卓越的能力,但其实际应用还存在一些问题。其中,LLM 的「幻觉(hallucination)」问题是一个重要缺陷。幻觉是指由人工智能算法生成看似合理但却虚假或有误导性的响应。自 LLM 爆火以来,研究人员一直在努力分析和缓解幻觉问题,该问题让 LLM 很难广泛应用。现在,一项新研究得出结论:「经过校准的语言模型必然会出现幻觉。」研究论文是微软研究院高级研究员 Adam Tauman Kalai 和佐治亚理工学院教授 Santosh
1/2/2024 3:19:00 PM
机器之心
资讯热榜
我国首个发电行业大模型“擎源”发布,模型参数达千亿级别
Bilibili开源动漫视频生成模型AniSora V3版,一键生成多种风格动漫视频镜头
未来已来!Hengbot发布 Sirius 机器狗,能跳舞会踢球,还有AI陪聊
Chai Discovery发布Chai- 2 模型:零样本抗体设计突破16-20%命中率
xAI控制台新增Grok4及Grok4Code引用,标志着下一代AI模型即将发布
不再单一依赖英伟达,消息称 OpenAI 首次采用谷歌 AI 芯片训练 ChatGPT
Gemini2.5Pro API 免费回归,开发者社区热烈响应
OpenAI 高管回应 Meta 挖角潮:正积极留人,将“重新调整”薪酬
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
Anthropic
代码
英伟达
算法
Stable Diffusion
芯片
智能体
训练
开发者
生成式
腾讯
蛋白质
苹果
神经网络
3D
研究
生成
AI新词
Claude
机器学习
计算
LLM
Sora
AI设计
AI for Science
AI视频
GPU
人形机器人
xAI
百度
华为
搜索
大语言模型
场景
Agent
字节跳动
预测
深度学习
伟达
大型语言模型
工具
Transformer
视觉
RAG
神器推荐
模态
Copilot
亚马逊
具身智能
LLaMA
文本
算力
驾驶
API