AI在线 AI在线

AI for Science

新SOTA,浙大、中科院深度学习模型可靠、准确预测蛋白-配体,助力药物开发

编辑 | 萝卜皮准确预测蛋白质-配体相互作用对于理解细胞过程至关重要,目前仍面临着诸多挑战。 中国科学院、浙江大学的研究人员提出了 SurfDock,这是一种深度学习方法,通过将蛋白质序列、三维结构图和表面级特征整合到等变架构中来解决这一挑战。 SurfDock 在非欧几里德流形上采用生成扩散模型,优化分子平移、旋转和扭转以生成可靠的结合姿势。
12/18/2024 2:24:00 PM
ScienceAI

性能远超当前SOTA,首个可解释RNA的AI植物基础模型来了,整合1124种植物RNA信息

编辑丨&植物 RNA 的复杂序列编码了大量的生物调节元件,这些元件在协调植物生长、发育和适应环境压力的关键方面起到重要作用。 基础模型 (FM) 的最新进展证明了它们在破译生物学中复杂“语言”方面前所未有的潜力。 于最近的研究中,东北师范大学、英国约翰·英尼斯中心( John Innes Centre)和埃克塞特大学(University of Exeter)等组成的团队提出了 PlantRNA-FM,一种专为植物设计的高性能且可解释的 RNA 基础模型。
12/16/2024 2:07:00 PM
ScienceAI

机械系统也能自主学习!密歇根大学团队构建了全新数学框架,登上Nature Communications

编辑丨&受人脑复杂运作的启发,神经网络已经彻底改变了各个领域的生产研究现状。 然而,考虑到基于计算机的神经网络需求的大量计算与极高能耗,特别是传统数字处理器的能源效率,机械神经网络的发展逐步被提上日程。 在光学神经网络中,波-物质相互作用被用来实现机器学习,类似的思路也可以被用来建立机械神经网络(MNN)的学习框架。
12/11/2024 2:29:00 PM
ScienceAI

LLM学习原子「结构语言」,生成未知化合物的晶体结构,登Nature子刊

编辑 | 萝卜皮生成合理的晶体结构通常是预测材料化学成分及其性质的第一步,但当前大多数预测方法计算成本高,制约了创新进程。 通过使用优质生成的候选结构来预测晶体结构,可以突破这一瓶颈。 在最新的研究中,英国雷丁大学(University of Reading)的研究人员介绍了 CrystaLLM,这是一种基于晶体学信息文件 (CIF) 格式的自回归大型语言建模 (LLM) 的多功能晶体结构生成方法。
12/10/2024 6:32:00 PM
ScienceAI

量化617,462种人类微蛋白必需性,北大LLM蛋白质综合预测与分析,登Nature子刊

编辑 | 萝卜皮人类必需蛋白(HEP)对于个体的生存和发育必不可少。 然而,鉴定 HEP 的实验方法通常成本高昂、耗时费力。 此外,现有的计算方法仅在细胞系水平上预测 HEP,但 HEP 在活体人类、细胞系和动物模型中有所不同。
12/9/2024 11:55:00 AM
ScienceAI

字节&北大Nature子刊新成果:自旋本征态的高效精确求解

编辑 | ScienceAI近些年来 AI for Science 在众多领域取得重大成功。 其中,基于神经网络的量子变分蒙特卡洛方法 (NNVMC) 在量子化学领域展现出强大潜力,备受关注。 最近字节跳动研究部门 ByteDance Research 和北京大学团队在 NNVMC 框架中融入物理对称性,实现了量子激发态的高效精确求解。
12/6/2024 2:50:00 PM
ScienceAI

仅总参数量0.1%、单GPU 15分钟完成微调,人类基因组基础模型NT登Nature子刊

编辑 | 萝卜皮从 DNA 序列预测分子表型仍然是基因组学中的一个长期挑战,通常是由于注释数据有限以及无法在任务之间转移学习所致。 在这里,英国伦敦 InstaDeep 的研究人员提出了在 DNA 序列上进行预训练的基础模型,称为 Nucleotide Transformer;其参数范围从 5000 万到 25 亿,并整合了来自 3,202 个人类基因组和 850 个不同物种基因组的信息。 这些 Transformer 模型可生成特定上下文的核苷酸序列表示,即使在低数据环境下也能实现准确预测。
12/4/2024 2:20:00 PM
ScienceAI

打破GNN与语言模型间壁垒,图辅助多模态预训练框架用于催化剂筛选,登Nature子刊

编辑 | KX吸附能是一种反应性描述符,必须准确预测,才能有效地将机器学习应用于催化剂筛选。 该过程涉及在催化表面上的不同吸附构型中找到最低能量。 尽管图神经网络在计算催化剂系统的能量方面表现出色,但它们严重依赖原子空间坐标。
12/3/2024 2:42:00 PM
ScienceAI

精确属性控制,湖大、西电从头药物设计AI方法,登Nature子刊

编辑 | 萝卜皮深度生成模型在药物从头设计领域受到广泛关注。 然而,针对新靶点合理设计配体分子仍然具有挑战性,特别是在控制生成分子的性质方面。 在这里,受到 DNA 编码化合物库技术的启发,湖南大学和西安电子科技大学的研究人员提出了 DeepBlock,这是一种基于块(block)的配体生成深度学习方法,可根据目标蛋白质序列进行定制,同时实现精确的属性控制。
12/2/2024 2:59:00 PM
ScienceAI

准确率84.09%,腾讯AI Lab发布Interformer,用于蛋白质-配体对接及亲和力预测,登Nature子刊

编辑 | 萝卜皮近年来,深度学习模型在蛋白质-配体对接和亲和力预测中的应用引起了越来越多的关注,而这两者都对基于结构的药物设计至关重要。 然而,许多此类模型忽略了复合物中配体和蛋白质原子之间相互作用的复杂建模,从而限制了它们的泛化和可解释性。 在最新的研究中,腾讯 AI Lab 的研究人员提出了 Interformer,这是一个基于 Graph-Transformer 架构的统一模型。
11/28/2024 3:15:00 PM
ScienceAI

6.85亿次AI加速模拟,分析2万种材料,Meta发布催化剂数据集OCx24

编辑 | X_X近日,Meta FAIR 与多伦多大学和 VSParticle(荷兰纳米技术工程公司 )合作,发布了开放催化剂实验 2024(OCx24)数据集,该数据集包含 572 个使用湿法和干法合成的样品,并经过 X 射线荧光和 X 射线衍射表征。 为新催化剂的开发提供了宝贵的见解。 该研究是 Meta FAIR 开放催化剂项目的延续,旨在利用人工智能来建模和发现新的催化剂,应对气候变化带来的能源挑战。
11/26/2024 4:51:00 PM
ScienceAI

探索蛋白质动态变化,新AI方法JAMUN比标准MD模拟更快、更准确

编辑 | 白菜叶蛋白质结构的动态变化对于理解其功能和开发靶向药物治疗至关重要,尤其是对于隐蔽的结合位点。 然而,现有的生成构象集合的方法存在效率低下或缺乏通用性的问题,无法在训练系统之外发挥作用。 分子动力学 (MD) 模拟是当前探索蛋白质运动的标准,但计算成本高昂,且受短时间步长要求的限制,因此难以捕捉较长时间尺度上发生的更广泛蛋白质构象变化。
11/23/2024 4:01:00 PM
ScienceAI

AlphaFold3级性能、开源、可商用,MIT团队推出生物分子预测模型Boltz-1

图示:来自测试集的靶标上的 Boltz-1 的示例预测。 (来源:论文)编辑 | 萝卜皮2024 年 11 月 18 日,麻省理工学院(MIT)的研究人员宣布推出 Boltz-1,这是一个开源模型,旨在准确模拟复杂的生物分子相互作用。 Boltz-1 是第一个完全商业化的开源模型,在预测生物分子复合物的 3D 结构方面达到 AlphaFold3 级精度。
11/19/2024 11:59:00 AM
ScienceAI

分子表征从「图」到「视频」,1.2亿帧、200万分子,湖大分子视频基础模型登Nature子刊

编辑 | KX分子表征已经从「图」扩展到「视频」了。 两年前,湖南大学的研究团队,开发了具有化学意识的深度学习框架 ImageMol,用于从大规模分子图像中学习分子结构,可准确预测分子特性和药物靶点。 现在,该研究团队将 ImageMol 进行了重大升级,提出一个基于分子视频的基础模型,称为 VideoMol,该模型在 1.2 亿帧的 200 万个未标记的类药物分子和生物活性分子上进行了预训练。
11/14/2024 6:02:00 PM
ScienceAI

AI面临的五个蛋白质设计问题,Nature找了一群专家来讨论

编辑 | 白菜叶Alena Khmelinskaia 希望设计定制蛋白质就像订餐一样简单。 她说,想象一下一台「自动售货机」,任何研究人员都可以使用它来指定他们想要的蛋白质的功能、大小、位置、分子伴侣或者其他特征。 「理想情况下,你会得到一个可以同时完成所有这些事情的完美设计。
11/13/2024 3:25:00 PM
ScienceAI

AlphaFold3开源了,诺奖AI工具人人可用,开启生物分子设计新时代

编辑 | ScienceAIAlphaFold3 终于开源了。 六个月前 AlphaFold3 发布的时候,谷歌 DeepMind 没有公布其论文代码,因此引发了学界的巨大争议。 如今,DeepMind 于 11 月 11 日宣布,科学家现在可以免费下载软件代码,并将 AlphaFold3 用于非商业应用。
11/12/2024 4:36:00 PM
ScienceAI

ByteDance Research登Nature子刊:AI+冷冻电镜,揭示蛋白质动态

2024 年的诺贝尔化学奖颁发给了在结构生物学领域取得重大成就的 David Baker 团队和 AlphaFold 团队,激发了 AI for science 领域新的研究热潮。 近两年科学界一个饱受争议的命题是:“AlphaFold 是否终结了结构生物学? ” 首先,AlphaFold 之类的结构预测模型的训练数据正是来自于以 X 射线、冷冻电镜(cryo-EM)等为代表的传统结构解析方法。
11/12/2024 1:09:00 PM
机器之心

谷歌、MIT等开发多智能体医疗决策框架MDAgents,医学LLM新用法

编辑 | 白菜叶基础模型正在成为医学领域的宝贵工具。 然而,尽管它们前景广阔,但在复杂的医学任务中如何最好地利用大型语言模型 (LLM) 仍是一个悬而未决的问题。 麻省理工学院、谷歌研究院和首尔国立大学医院的研究人员提出了一种新颖的多智能体框架,称为医疗决策智能体 (MDAgents),它通过自动为 LLM 团队分配协作结构来帮助解决这一差距。
11/8/2024 2:56:00 PM
ScienceAI