X-SAM
X-SAM:从「分割一切」到「任意分割」:统一图像分割多模态大模型,在20+个图像分割数据集上均达SoTA
本研究由中山大学、鹏城实验室、美团联合完成,第一作者王豪为中山大学博士研究生,主要研究方向为图像和视频分割、开放场景视觉感知、多模态大模型等。 论文共同通讯作者为梁小丹教授和蓝湘源副研究员。 背景与动机Segment Anything Model (SAM) 作为基础分割模型在密集分割掩码生成方面表现卓越,但其依赖视觉提示的单一输入模式限制了在广泛图像分割任务中的适用性。
8/19/2025 2:49:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
AI新词
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
具身智能
生成
百度
Sora
工具
GPU
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
亚马逊
视觉
Transformer
AI模型
预测
特斯拉
MCP