AI在线 AI在线

文本分块

告别固定分块!2024 EMNLP 新方法 LumberChunker:用 LLM 实现动态语义分块,检索效果显著提升

在大语言模型(LLM)主导的现代 NLP 领域,密集检索已成为问答、摘要、知识问答等任务的核心支撑 —— 毕竟模型再强大,也需要精准的外部上下文来避免 “幻觉”、获取最新信息。 但检索效果的好坏,往往卡在一个容易被忽视的环节:文本分块。 传统分块方法(按句子、段落或固定长度切割)就像用尺子机械丈量文本,完全忽略了内容的语义关联性:要么把一个完整的概念拆得七零八落,导致检索片段上下文残缺;要么把多个无关主题硬塞进一个块里,引入大量噪声。
8/25/2025 8:59:13 AM
Goldma

RAG应用如何进行有效的文本切分

在RAG(检索增强生成,Retrieval-Augmented Generation)应用中,文本分块(Text Chunking)是连接“知识存储”与“检索-生成”的核心预处理步骤,其重要性体现在对检索效率、相关性、生成质量及系统灵活性的多维度影响。 首先松哥和大家讨论第一个问题,就是为什么我们要重视文本切分。 一、为什么文本切分很重要1.1 提升检索相关性:精准匹配用户需求RAG 的核心是“先检索、后生成”,而检索的本质是从知识库中找到与用户查询语义最相关的信息。
8/1/2025 1:55:00 AM
江南一点雨
  • 1