AI在线 AI在线

Transformer

Transformer能否推理引争议,DeepMind连夜更新论文开源数据集:Transformer真的很强

DeepMind闷声干大事,悄悄训练了一个大小只有270M的Transformer模型,居然不需要搜索,就能实现大师级的下棋水平。 这几天的推特因为这篇2月份发布的论文吵得不可开交,DeepMind团队也赶紧放出了更新后的论文版本,开源了有关数据集和代码,对网上的争议做了回应。 最开始,有位网友分享了DeepMind的这项研究,并提出“Transformer也能用于逻辑任务”的观点,没想到却激起了一场关于Transformer能不能推理的争论。
10/23/2024 10:23:00 AM
刘洁

还是原装Transformer好!北大清华团队同时揭示Mamba等推理短板

AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。
10/21/2024 11:11:00 AM
机器之心

补齐Transformer规划短板又不放弃快速思考,田渊栋团队的Dualformer融合System 1和2双重优势

一个 token 就能控制模型快些解答或慢点思考。OpenAI ο1 模型的发布掀起了人们对 AI 推理过程的关注,甚至让现在的 AI 行业开始放弃卷越来越大的模型,而是开始针对推理过程进行优化了。今天我们介绍的这项来自 Meta FAIR 田渊栋团队的研究也是如此,其从人类认知理论中获得了灵感,提出了一种新型 Transformer 架构:Dualformer。
10/16/2024 1:11:00 PM
机器之心

图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。
10/14/2024 12:44:00 PM
机器之心

AI 架构 Transformer 再进化:谷歌新方法突破长文本处理,注意力模块内存需求可降至 1/47

科技媒体 marktechpost 昨日(10 月 8 日)发布博文,报道称谷歌公司推出了选择性注意力(Selective Attention)方法,可以提高 Transformer 架构模型的性能。Transformer 架构简介Transformer 是一种革命性的神经网络架构,由谷歌在 2017 年提出,主要用于处理序列数据,特别是在自然语言处理(NLP)领域。Transformer 的核心是自注意力机制,允许模型在处理输入序列时捕捉词与词之间的关系,让模型能够关注输入序列中的所有部分,而不仅仅是局部信息。T
10/9/2024 10:44:18 AM
故渊

非 Transformer 架构 AI 模型 Liquid 问世,号称性能“凌驾 Meta Llama / 微软 Phi”

去年刚成立的 Liquid AI 公司于 9 月 30 日发布了三款 Liquid 基础模型(Liquid Foundation Models,LFM),分别为 LFM-1.3B、LFM-3.1B 和 LFM-40.3B。这些模型均采用非 Transformer 架构,号称在基准测试中凌驾同规模的 Transformer 模型。AI在线注意到,目前业界在深度学习和自然语言处理方面主要使用 Transformer 架构,该架构主要利用自注意力机制捕捉序列中单词之间的关系,包括 OpenAI 的 GPT、Meta 的
10/2/2024 11:28:46 AM
漾仔

给机器人装上「虫脑」?非Transformer液态神经网络终于来了!MIT CSAIL负责人创业成果

在大模型时代,谷歌 2017 年开创性论文《Attention Is All You Need》中提出的 Transformer 已经成为主流架构。然而,刚刚一家由 MIT 计算机科学与人工智能实验室 (CSAIL) 前研究人员共同创立的初创公司 Liquid AI 却走出了不一样的路线。Liquid AI 表示他们的目标是「探索构建超越生成式预训练 Transformer (GPT) 基础模型的方法」。为了实现这一目标,Liquid AI 推出了其首批多模态 AI 模型:Liquid Foundation Mod
10/1/2024 2:20:00 PM
机器之心

首个Mamba+Transformer混合架构多模态大模型来了,实现单卡千图推理

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]
9/21/2024 8:31:00 PM
机器之心

CoT能让模型推理能力无上限?田渊栋、LeCun下场反对:两层MLP还能模拟全世界呢

「这相当于在理论上,两层神经网络在理论上可以拟合任何数据,我们就盲目相信并应用在所有场景中。」大模型新范式 OpenAI o1 一经发布,如何「复刻」出 o1 便成为了 AI 圈最热的话题。由于 OpenAI 对技术细节守口如瓶,想从 AI 那里「套话」,让它复述完整的内部推理过程,多问几句,OpenAI 直接发邮件警告要撤销你的使用资格。想从技术报告中想找出点蛛丝马迹,也同样困难。于是,大家将目光转向了以往类似的研究成果,希望从中找到些线索。比如,Google Brain 推理团队创建者 Denny Zhou 立
9/19/2024 5:51:00 PM
机器之心

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Transformer 在深度学习领域取得巨大成功的关键是注意力机制。注意力机制让基于 Transformer 的模型关注与输入序列相关的部分,实现了更好的上下文理解。然而,注意力机制的缺点是计算开销大,会随输入规模而二次增长,Transformer 也因此难以处理非常长的文本。前段时间,Mamba 的出现打破了这一局面,它可以随上下文长度的增加实现线性扩展。随着 Mamba 的发布,这些状态空间模型 (SSM) 在中小型规模上已经可以与 Transformer 匹敌,甚至超越 Transformer,同时还能维持
9/1/2024 10:04:00 PM
机器之心

元象推出国内首个基于物理的3D动作生成模型MotionGen

www.MotionGen.cn 一句话生成复杂3D动作,效果惊艳!测试期可申请免费试用。3D内容制作领域,生成逼真的角色动作生成是一个持续挑战,传统方法依赖大量的手K制作,或昂贵动作捕捉设备,效率低、成本高、难以生成一般运动任务或适应复杂场景和交互。元象XVERSE推出国内首个基于物理的3D动作生成模型MotionGen,创新性融合大模型、物理仿真和强化学习等前沿算法,让用户输入简单文本指令,就能快速生成逼真、流畅、复杂的3D动作,效果惊艳,标志着中国3D AIGC领域的重大突破。现在起,零经验创作者也能轻松上手
8/28/2024 3:41:00 PM
新闻助手

统一transformer与diffusion!Meta融合新方法剑指下一代多模态王者

本文引入了 Transfusion,这是一种可以在离散和连续数据上训练多模态模型的方法。一般来说,多模态生成模型需要能够感知、处理和生成离散元素(如文本或代码)和连续元素(如图像、音频和视频数据)。在离散模态领域,以预测下一个词为目标的语言模型占据主导地位,而在生成连续模态方面,扩散模型及其泛化形式则是当前最先进技术。研究者一直试图将语言模型与扩散模型结合,一种方法是直接扩展语言模型,使其能够利用扩散模型作为一个工具,或者将一个预训练的扩散模型嫁接到语言模型上。另一种替代方案是对连续模态进行量化处理,然后在离散的
8/26/2024 9:22:00 AM
机器之心

机器人策略学习的Game Changer?伯克利提出Body Transformer

过去几年间,Transformer 架构已经取得了巨大的成功,同时其也衍生出了大量变体,比如擅长处理视觉任务的 Vision Transformer(ViT)。本文要介绍的 Body Transformer(BoT) 则是非常适合机器人策略学习的 Transformer 变体。我们知道,物理智能体在执行动作的校正和稳定时,往往会根据其感受到的外部刺激的位置给出空间上的响应。比如人类对这些刺激的响应回路位于脊髓神经回路层面,它们专门负责单个执行器的响应。起校正作用的局部执行是高效运动的主要因素,这对机器人来说也尤为重
8/19/2024 2:19:00 PM
机器之心

首个全自动科学发现AI系统,Transformer作者创业公司Sakana AI推出AI Scientist

编辑 | ScienceAI一年前,谷歌最后一位 Transformer 论文作者 Llion Jones 离职创业,与前谷歌研究人员 David Ha共同创立人工智能公司 Sakana AI。Sakana AI 声称将创建一种基于自然启发智能的新型基础模型!现在,Sakana AI 交上了自己的答卷。Sakana AI 宣布推出 AI Scientist,这是世界上第一个用于自动化科学研究和开放式发现的 AI 系统!从构思、编写代码、运行实验和总结结果,到撰写整篇论文和进行同行评审,AI Scientist 开启
8/13/2024 2:11:00 PM
ScienceAI

Falcon Mamba 7B 开源模型登顶:换掉 Transformer,任意长序列都能处理

只是换掉 Transformer 架构,立马性能全方位提升,问鼎同规模开源模型!(注意力机制不存在了)这就是最新 Falcon Mamba 7B 模型。它采用 Mamba 状态空间语言模型架构来处理各种文本生成任务。通过取消传统注意力机制,有效提升了模型处理长序列时计算效率低下的问题。它可以处理无限长序列,但内存需求不增加。无论上下文多长,生成每个 token 的时间基本一样。由此,Falcon Mamba 模型性能全方位提升,打败一众 Transformer 架构模型,如 Llama-3.1(8B)、Mistra
8/13/2024 1:29:03 PM
汪淼

混合专家更有主见了,能感知多模态分情况行事,Meta提出模态感知型专家混合

混合专家,也得术业有专攻。对于目前的混合模态基础模型,常用的架构设计是融合特定模态的编码器或解码器,但这种方法存在局限:无法整合不同模态的信息,也难以输出包含多种模态的内容。为了克服这一局限,Meta FAIR 的 Chameleon 团队在近期的论文《Chameleon: Mixed-modal early-fusion foundation models》中提出了一种新的单一 Transformer 架构,它可以根据下一个 token 的预测目标,对由离散图像和文本 token 组成的混合模态序列进行建模,从而
8/11/2024 10:55:00 AM
机器之心

八问八答搞懂Transformer内部运作原理

七年前,论文《Attention is all you need》提出了 transformer 架构,颠覆了整个深度学习领域。如今,各家大模型都以 transformer 架构为基础,但 transformer 内部运作原理,仍是一个未解之谜。去年,transformer 论文作者之一 Llion Jones 宣布创立人工智能公司 Sakana AI。近期,Sakana AI 发表了一篇题为《Transformer Layers as Painters》的论文,探究了预训练 transformer 中的信息流,并
8/7/2024 2:23:00 PM
机器之心

小技巧大功效,「仅阅读两次提示」让循环语言模型超越Transformer++

在当前 AI 领域,大语言模型采用的主流架构是 Transformer。不过,随着 RWKV、Mamba 等架构的陆续问世,出现了一个很明显的趋势:在语言建模困惑度方面与 Transformer 较量的循环大语言模型正在快速进入人们的视线。令人兴奋的是,这些架构在推理期间使用了恒定量的内存。不过,受制于有限的内存,循环语言模型(LM)无法记忆并使用长上下文中的所有信息,这导致了上下文学习(in-context learning,ICL)质量的不佳。因此,获得高效大语言模型的关键挑战在于选择存储或者丢弃哪些信息。在最
8/4/2024 1:21:00 PM
机器之心