判别式约束优化
NeurIPS25高分论文|以判别式监督学习强化推理LLM,解决难度偏差和熵崩塌难题
作者介绍:德州农工大学博士生李港,专注于设计和应用高效算法到大规模机器学习和人工智能任务,包括增强大型基础模型的后训练算法、对抗性鲁棒学习算法和分布鲁棒性学习算法。 曾发表数篇论文在 NeurIPS、ICML、KDD 等顶会, 并作为主要贡献者之一发布了针对不平衡分类任务的知名软件包 LibAUC。 DeepSeek-R1 的成功吸引了人们对群体相对策略优化(GRPO)作为大型推理模型(LRM)强化学习方法的广泛关注。
10/26/2025 7:04:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
AI新词
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
生成
具身智能
百度
Sora
工具
GPU
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
亚马逊
视觉
Transformer
AI模型
预测
特斯拉
MCP