AI在线 AI在线

ICML2025

ICML2025|探索损失加权机制的本质以实现更好的LLM反学习

基于海量数据训练得到的大语言模型(LLM)表现出强大的推理和解决问题的能力,但也深受海量数据带来的敏感信息(隐私、安全、伦理问题)困扰。 机器反学习(Unlearning)旨在准确擦除目标知识,同时保持模型在其他目标任务上的能力。 基于损失加权方法的诸多探索已表现出对于LLM反学习的益处,然而,它们的具体功能并不明确,最佳策略也是一个悬而未决的问题,因此阻碍了对现有方法的理解和改进。
8/6/2025 5:03:00 PM
新闻资讯

ICML2025|清华医工平台提出大模型「全周期」医学能力评测框架MultiCogEval

本文工作由清华大学电子系医工交叉平台吴及教授和刘喜恩助理研究员所领导的医学自然语言处理团队,联合北邮、科大讯飞、无问芯穹等单位共同完成。 第一作者周宇轩为清华大学电子工程系博士生,其研究方向聚焦于大模型的医疗垂类能力评估与优化,此前已提出 MultifacetEval(IJCAI 2024)与 PretexEval(ICLR 2025)等医学知识掌握的多面动态评估框架体系。 吴及教授和刘喜恩助理研究员所领导的医学自然语言处理团队长期致力于面向真实需求驱动的医工交叉前沿技术研究与产业变革,曾在 2017 年联合科大讯飞研发了首个以 456 分高分通过国家临床执业医师资格考试综合笔试测试 AI 引擎 Med3R(Nature Communications 2018)并在全国 400 多个区县服务于基层医疗;2021 年联合惠及智医研发了首个基于全病历内容分析的智慧医保 AI 审核引擎,获得国家医保局智慧医保大赛一等奖,并在全国多个省市进行示范应用。
7/23/2025 10:30:00 AM
机器之心
  • 1