Batch
深度学习中Batch Size对训练过程如何影响?
之前面试过程中被问到过两个问题:(1)深度学习中batch size的大小对训练过程的影响是什么样的? (2)有些时候不可避免地要用超大batch,比如人脸识别,可能每个batch要有几万甚至几十万张人脸图像,训练过程中超大batch有什么优缺点,如何尽可能地避免超大batch带来的负面影响? 面试版回答在不考虑Batch Normalization的情况下(这种情况我们之后会在bn的文章里专门探讨),先给个自己当时回答的答案吧(相对来说学究一点):(1) 不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间和每次迭代(iteration)之间梯度的平滑程度。
6/13/2025 2:55:00 AM
grok
OpenAI 推出 Batch 批处理 API:半价折扣,24 小时内输出结果
感谢OpenAI 今天凌晨面向开发者推出 Batch 批处理 API,可在 24 小时内给出结果,并提供 API 半价折扣。新的 Batch API 适用于异步任务处理,如当开发者需要处理大量文本、图片、摘要时,就可以使用该 API,OpenAI 会在 24 小时内给出处理结果。这样 OpenAI 可以在非高峰期处理,节约服务器资源,并为开发者提供半价优惠,解锁更高的速率限制。新的 Batch API 支持使用以下模型:gpt-3.5-turbogpt-3.5-turbo-16kgpt-4gpt-4-32kgpt-
4/16/2024 2:39:32 PM
泓澄(实习)
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
AI设计
Claude
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
Transformer
LLM
字节跳动
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构