AI在线 AI在线

清华、NVIDIA、斯坦福提出DiffusionNFT:基于前向过程的扩散强化学习新范式,训练效率提升25倍

清华大学朱军教授团队, NVIDIA Deep Imagination 研究组与斯坦福 Stefano Ermon 团队联合提出了一种全新的扩散模型强化学习(RL)范式 ——Diffusion Negative-aware FineTuning (DiffusionNFT)。 该方法首次突破现有 RL 对扩散模型的基本假设,直接在前向加噪过程(forward process)上进行优化,在彻底摆脱似然估计与特定采样器依赖的同时,显著提升了训练效率与生成质量。 文章共同一作郑凯文和陈华玉为清华大学计算机系博士生。
图片

清华大学朱军教授团队, NVIDIA Deep Imagination 研究组与斯坦福 Stefano Ermon 团队联合提出了一种全新的扩散模型强化学习(RL)范式 ——Diffusion Negative-aware FineTuning (DiffusionNFT)。该方法首次突破现有 RL 对扩散模型的基本假设,直接在前向加噪过程(forward process)上进行优化,在彻底摆脱似然估计与特定采样器依赖的同时,显著提升了训练效率与生成质量。文章共同一作郑凯文和陈华玉为清华大学计算机系博士生。

图片
  • 论文标题:DiffusionNFT: Online Diffusion Reinforcement with Forward Process

  • 论文链接:https://arxiv.org/abs/2509.16117

  • 代码仓库:https://github.com/NVlabs/DiffusionNFT

背景 | 扩散模型的 RL 困境

近年来,强化学习在大语言模型(LLMs)后训练中的巨大成功,催生了人们将类似方法迁移到扩散模型的探索。例如,FlowGRPO 等方法通过将扩散采样过程离散化为多步决策问题,从而在反向过程上应用策略梯度优化。然而,这一思路存在多重根本性局限:

1. 似然估计困难:自回归模型的似然可精确计算,而扩散模型的似然只能以高开销近似,导致 RL 优化过程存在系统性偏差。

2. 前向–反向不一致:现有方法仅在反向去噪过程中施加优化,没有对扩散模型原生的前向加噪过程的一致性进行约束,模型在训练后可能退化为与前向不一致的级联高斯。

3. 采样器受限:需要依赖特定的一阶 SDE 采样器,无法充分发挥 ODE 或高阶求解器在效率与质量上的优势。

4.CFG 依赖与复杂性:现有 RL 方案在集成无分类器引导 (CFG) 时需要在训练中对双模型进行优化,效率低下。

因此,如何设计一种既能保留扩散模型原生训练框架,又能高效融入强化学习信号的统一方法,是亟待探索的问题。

方法 | 基于前向过程的负例感知微调

图片

DiffusionNFT 提出了一个全新的思路:把强化学习直接作用于扩散的前向加噪过程,而非反向去噪轨迹。这一设计带来了范式性的转变。

核心机制包括:

正负对比的改进方向:在采样生成中,利用奖励信号将样本划分为正例与负例,从而定义出一个隐式的 “改进方向”。与只使用正样本的拒绝采样微调(Rejection FineTuning, RFT)不同,DiffusionNFT 显式利用负样本信号,确保模型有效 “避开” 低质量区域。

图片

负例感知微调 (Negative-aware FineTuning, NFT):通过一种巧妙的隐式参数化方式,从目标模型同时定义正向策略与负向策略,将正负分布对比转化为单一网络的训练目标,不需额外判别器或引导模型。

图片

强化指导 (Reinforcement Guidance):在数学上,DiffusionNFT 将优化目标刻画为对旧策略分布的偏移量 ∆,这一过程与 CFG 类似,但不依赖双模型结构,而是内生于训练目标中。

这样的设计使 DiffusionNFT 同时满足以下优势:

1. 前向一致性:训练目标严格符合扩散的 Fokker–Planck 方程,不破坏与前向过程的一致性,使得训练后的模型仍然是良定义的扩散模型。

2. 采样器自由:训练与采样彻底解耦,可使用任意黑盒 ODE/SDE 求解器,摆脱对一阶 SDE 的依赖;同时在训练时只需存储最终样本与对应奖励值,无需整条采样轨迹。

3. 似然无关:不再需要变分下界或反向轨迹似然估计,训练只依赖生成图像与奖励。

4.CFG-free 原生优化:直接学习到奖励引导的生成能力,避免 CFG 的推理开销,同时仍可兼容 CFG 进一步提升性能。

实验 | 高效性与生成质量

研究团队在多个奖励模型上验证了 DiffusionNFT 的有效性。主要结果包括:

大幅效率提升:在 GenEval 任务上,DiffusionNFT 仅需 1k 步 即可将得分从 0.24 → 0.98,而 FlowGRPO 需超过 5k 步才能达到 0.95。整体上,DiffusionNFT 在不同任务上表现出 3×~25× 的训练效率优势。

图片

CFG-free 场景下显著提升:即便完全不依赖 CFG,DiffusionNFT 也能在美感、对齐度等方面显著优于原始模型。

多奖励联合优化:在 SD3.5-Medium 上同时优化 GenEval、OCR、PickScore、ClipScore、HPSv2.1 等多种奖励,最终模型在所有指标上均超越原始模型,与只针对单一奖励进行优化的 FlowGRPO 持平,并超过更大规模的 SD3.5-L 与 FLUX.1-Dev 模型。

图片

展望 | 向统一的生成对齐范式迈进

DiffusionNFT 的提出,不仅为扩散模型的强化学习提供了一个高效、简洁且理论完备的新框架,也对更广泛的生成模型对齐研究具有启发意义。从语言模型到视觉生成,DiffusionNFT 展示了负例感知 + 前向一致性普适价值。它打破了似然估计与反向轨迹的限制,建立起监督学习与强化学习之间的桥梁。在未来,DiffusionNFT 有望推广至多模态生成、视频生成以及大模型对齐等更复杂场景,成为统一的生成优化范式。

相关资讯

扩散模型如何构建新一代决策智能体?超越自回归,同时生成长序列规划轨迹

设想一下,当你站在房间内,准备向门口走去,你是通过自回归的方式逐步规划路径吗?实际上,你的路径是一次性整体生成的。近期的研究表明,采用扩散模型的规划模块能够同时生成长序列的轨迹规划,这更加符合人类的决策模式。此外,扩散模型在策略表征和数据合成方面也能为现有的决策智能算法提供更优的选择。来自上海交通大学的团队撰写的综述论文《Diffusion Models for Reinforcement Learning: A Survey》梳理了扩散模型在强化学习相关领域的应用。综述指出现有强化学习算法面临长序列规划误差累积、
3/11/2024 11:46:00 AM
机器之心

MetaDiff:用扩散模型重塑元学习,攻克小样本学习瓶颈!

一眼概览MetaDiff 提出了一种基于条件扩散模型的创新元学习方法,通过将梯度下降优化建模为去噪过程,有效提升了小样本学习(FSL)的性能,显著减少了内循环优化中的内存负担和梯度消失风险。 核心问题小样本学习的主要挑战在于:如何在训练数据有限的情况下快速适应新任务,而不引入过拟合或内存瓶颈。 传统基于梯度的元学习方法需要计算内循环路径上的二阶导数,导致内存消耗高和梯度消失问题,从而影响性能。
1/27/2025 12:57:43 AM
萍哥学AI

「扩散模型+多模态提示」精准增强皮肤病变分割,超越GAN,SSIM提升9%,Dice提升5%!

一眼概览该论文提出了一种基于扩散模型的医学影像生成方法,结合视觉和文本提示,以精准控制皮肤镜病变图像的生成,提升皮肤病变的分割性能。 实验结果显示,该方法比传统GAN生成方法在图像质量(SSIM提升9%)和分割性能(Dice系数提升5%)上均有显著改进。 核心问题问题背景医学影像分析受限于公开数据集稀缺及高质量标注成本高,数据增强方法(如GAN)虽能扩充数据,但难以精准控制病变类型、位置及属性,导致对下游任务(如病变分割)的提升有限。
2/4/2025 9:42:47 AM
萍哥学AI
  • 1