掩码
CVPR2025|不改U-Net也能提升生成力!MaskUNet用掩码玩转扩散模型
一眼概览MaskUNet 提出了一种基于可学习掩码的参数筛选机制,在不更新预训练U-Net参数的前提下,有效提升了扩散模型的图像生成质量和下游泛化能力。 核心问题当前扩散模型在不同时间步使用相同U-Net参数生成结构和纹理信息,限制了模型的表达灵活性。 该研究聚焦于:如何在不更改预训练U-Net的参数下,提升其对不同时间步和样本的适应性,以生成更高质量的图像?
6/5/2025 11:52:27 AM
萍哥学AI
可多模态数据集成、插补和跨模态生成,中科院&树兰医院&北师大团队开发带有掩码模块的深度生成框架
编辑 | 红菜苔随着单细胞技术的发展,许多细胞特性可以被测量。此外,多组学分析技术可以同时联合测量单个细胞中的两个或多个特征。为了快速处理积累的各种数据,需要多模态数据集成的计算方法。树兰医院、中国科学院和北京师范大学的合作团队提出了 inClust ,一个用于多组学分析的深度生成框架。它建立在之前针对转录组数据所开发的 inClust 的基础上,并增加了两个专为多模式数据处理设计的掩码模块:编码器前面的输入掩码模块和解码器后面的输出掩码模块。InClust 可用于整合来自相似细胞群的 scRNA-seq 和 M
2/5/2024 6:14:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
Claude
苹果
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
研究
xAI
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
华为
大语言模型
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
视频生成
预测
AGI
视觉
伟达
架构
Transformer
神器推荐
亚马逊
特斯拉
DeepMind
编程
MCP