悉尼科技大学
AAAI 2026 Oral | 给多流数据配「私教+外援」,漂移来了也不慌
本文作者为:En Yu, Jie Lu, Kun Wang, Xiaoyu Yang, Guangquan Zhang。 所有作者均来自于悉尼科技大学(UTS)澳大利亚人工智能研究院(AAII)。 在智慧城市、社交媒体、工业物联网等真实开放动态环境中,数据往往以多流(Multistream)形式并发产生。
VideoCoF:将「时序推理」引入视频编辑,无Mask实现高精度编辑与长视频外推!
本文第一作者是 UTS 博士生杨向鹏,主要研究方向是视频生成和世界模型;第二作者是谢集,浙江大学的四年级本科生,主要研究方向统一多模态大模型和视频生成。 通讯作者是吴强教授,主要研究方向为计算机视觉和模式识别。 现有的视频编辑模型往往面临「鱼与熊掌不可兼得」的困境:专家模型精度高但依赖 Mask,通用模型虽免 Mask 但定位不准。
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
AI新词
大模型
机器人
数据
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
英伟达
马斯克
Anthropic
图像
AI创作
训练
LLM
论文
代码
AI for Science
苹果
腾讯
算法
Agent
Claude
芯片
Stable Diffusion
具身智能
xAI
蛋白质
开发者
人形机器人
生成式
神经网络
机器学习
AI视频
3D
RAG
大语言模型
字节跳动
Sora
百度
研究
GPU
生成
工具
华为
AGI
计算
AI设计
生成式AI
大型语言模型
搜索
视频生成
亚马逊
特斯拉
AI模型
DeepMind
场景
深度学习
Copilot
Transformer
架构
MCP
编程
视觉