Vote
芝浦工大创新Vote-based框架,大幅提升手持物体姿态估计精度
在增强现实(AR)等应用中,手持物体的姿态估计是一项至关重要但颇具挑战性的任务。 近期,日本芝浦工业大学的研究团队提出了一种基于 Vote 机制的多模态融合框架,显著提高了这一领域的准确性,令人瞩目地提升了13.9% 的姿态估计精度。 这一新方法的核心在于有效整合来自 RGB(颜色)和深度图像的数据,特别是在手遮挡物体的情况下。
5/6/2025 12:00:51 PM
AI在线
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
蛋白质
具身智能
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
字节跳动
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉