Uni-Instruct
NeurIPS 2025 | 北大联合小红书提出Uni-Instruct:ImageNet单步生图FID进入1.0时代!
近年来,单步扩散模型因其出色的生成性能和极高的推理效率,在图像生成、文本到视频、图像编辑等领域大放异彩。 目前主流的训练方法是通过知识蒸馏,最小化学生模型与教师扩散模型之间的分布差异。 然而,现有的方法主要集中在两条平行的理论技术路线上:基于 KL 散度最小化的方法(如 Diff-Instruct[1],DMD[2] 等):收敛速度快,但可能存在模式崩溃问题,进而导致生成性能差。
10/28/2025 2:36:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
AI新词
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
生成
具身智能
百度
Sora
工具
GPU
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
亚马逊
视觉
Transformer
AI模型
预测
特斯拉
MCP