AI在线 AI在线

U-Net

CVPR2025|不改U-Net也能提升生成力!MaskUNet用掩码玩转扩散模型

一眼概览MaskUNet 提出了一种基于可学习掩码的参数筛选机制,在不更新预训练U-Net参数的前提下,有效提升了扩散模型的图像生成质量和下游泛化能力。 核心问题当前扩散模型在不同时间步使用相同U-Net参数生成结构和纹理信息,限制了模型的表达灵活性。 该研究聚焦于:如何在不更改预训练U-Net的参数下,提升其对不同时间步和样本的适应性,以生成更高质量的图像?
6/5/2025 11:52:27 AM
萍哥学AI
  • 1