Tool-Integrated Reinforcement Learning
自动学会工具解题,RL扩展催化奥数能力激增17%
在大模型推理能力提升的探索中,工具使用一直是克服语言模型计算局限性的关键路径。 不过,当今的大模型在使用工具方面还存在一些局限,比如预先确定了工具的使用模式、限制了对最优策略的探索、实现透明度不足等。 为了解决这些难题,来自上海交通大学、SII 和 GAIR 的研究团队提出了一种全新框架 ToRL(Tool-Integrated Reinforcement Learning),该方法允许模型直接从基座模型开始,通过强化学习自主探索最优工具使用策略,而非受限于预定义的工具使用模式。
4/1/2025 6:48:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind