深度神经
比Transformer更强的架构来了?浙大新作Translution,一统卷积和自注意力
自2017年Transformer模型提出以来,Self-attention机制凭借其强大的建模能力,逐渐成为深度学习领域的核心操作。 然而,随着人工智能模型的规模不断扩张,单纯依靠简单直接「堆参数、堆数据」提升性能的模式正逐渐遇到瓶颈。 面对大模型训练代价高昂、性能增长趋缓等挑战,学术界和产业界亟需新的网络架构创新。
10/23/2025 8:25:08 AM
新智元
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉