RXNGraphormer
Nature子刊 | 上智院统一框架RXNGraphormer,实现化学反应多任务精准预测,自发掌握分类规律
编辑丨ScienceAI人工智能正在重塑精准有机合成的未来,但反应性能预测(数值回归)与合成路线规划(序列生成)之间固有的方法差异,一直是构建统一深度学习架构的挑战。 针对这一难题,上海科学智能研究院(下称上智院)物质科学团队提出了一种名为 RXNGraphormer 的新型深度学习框架。 该框架通过整合图神经网络(GNN)与 Transformer 模型,成功实现了对化学反应活性、选择性以及单步正向与逆向合成的精准预测。
8/20/2025 2:05:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
蛋白质
具身智能
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
字节跳动
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉