AI在线 AI在线

RLVR

1.5B刷新数学代码SOTA!快手&清华精细化Token管理,LLM推理能力飙升

当大模型在数学题和代码任务里“卷”参数规模时,一支来自快手和清华的团队给出了不同答案——. 他们用1.5B参数的小模型,在多个推理基准上干过了同量级SOTA。 秘密在于给模型的“学习过程”做了精细化管理:让该记牢的知识稳住,让该灵活的推理放开。
7/31/2025 12:13:29 PM
不圆

IBM 研究:可验证奖励强化学习(RLVR)通过 GRPO 提升模型推理能力

大家好,我是肆〇柒。 今天,我们来探讨一篇来自IBM Research的前沿论文《REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS: GRPO’S EFFECTIVE LOSS, DYNAMICS, AND SUCCESS AMPLIFICATION》。 这篇论文由Youssef Mroueh撰写,聚焦于强化学习(Reinforcement Learning, RL)领域中一个极具潜力的研究方向——如何通过可验证奖励(RLVR)来优化大型语言模型(LLM)的训练。
5/30/2025 4:00:00 AM
肆零柒
  • 1