强化学习(RL)
学术打假!清华上交大研究颠覆认知:强化学习竟是大模型推理的"绊脚石"
【研究颠覆】清华大学与上海交通大学联合发表的最新论文,对业界普遍认为"纯强化学习(RL)能提升大模型推理能力"的观点提出了挑战性反驳。 研究发现,引入强化学习的模型在某些任务中的表现,反而逊色于未使用强化学习的原始模型。 【实验验证】研究团队在数学、编码和视觉推理三大领域进行了系统性实验:数学任务:在GSM8K、MATH500等基准测试中,RL模型在低采样次数(k值)下准确率提升,但在高k值时问题覆盖率显著下降编码任务:RLVR训练模型在HumanEval 等测试中单样本pass@1分数提高,但在高采样数(k=128)时覆盖率下降视觉推理:Qwen-2.5-VL-7B模型在多模态任务中表现一致,RL未改变其基本问题解决策略【学界争议】研究结果引发学界激烈讨论:支持方认为RL提高了采样效率但限制了推理能力开发反对方指出可能是奖励结构缺陷而非RL本身问题中立观点建议结合蒸馏等其他方法增强推理【本质思考】研究团队提出关键区分:能力:模型解决问题的潜质与逻辑链条效率:在给定能力范围内得出答案的速度与稳定性强化学习更像是"能力调控器"而非"能力创造器",它能让模型更擅长做已知的事,但难以开发新的推理路径。
4/23/2025 2:00:43 PM
AI在线
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP