加权
arXiv 2025 | 无需增参!加权卷积wConv2D助力分类去噪双提升,传统CNN焕然一新!
一眼概览本文提出了一种无需增加参数的加权卷积算子,通过引入空间密度函数显著提升CNN在图像分类与去噪任务中的性能表现。 核心问题传统卷积操作默认局部邻域内的像素等权贡献,忽视其空间位置差异,这限制了模型对空间特征的刻画能力。 该研究旨在解决如何在不增加模型参数的前提下,使卷积操作能够自适应地感知像素间的空间结构,从而提升图像分类与去噪性能。
6/13/2025 4:12:00 AM
萍哥学AI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉