幻觉率
“扁平+拓扑”双索引,85页PDF"秒级"推理,MMRag幻觉率骤降76%
多模态长文档视觉问答(Multimodal Long-context Document Question Answering, 后文简称 M-L-DocQA)要求系统在给定一份可能长达数十页, 包含:文本、表格、图表、图像与版式元素的 PDF。 自动定位并融合跨页、跨模态的证据,最终生成自然语言答案。 图片这种任务常见于科研论文、上市公司年报、产品说明书、政府统计报告等场景。
9/11/2025 2:22:00 AM
CourseAI
AAAI2025 | ICLR 2025爆款!CHiP创新引入视觉偏好,幻觉率腰斩
一眼概览CHiP 提出了一种跨模态分层偏好优化方法,通过视觉与文本偏好双重引导,显著提升多模态大模型(MLLMs)在幻觉检测任务中的表现,最高减少55.5%的幻觉率。 核心问题多模态大模型(如GPT-4V、LLaVA)虽具强大能力,但常产生“幻觉”——即图文语义不一致、生成不符合图像内容的描述。 现有DPO方法仅基于文本偏好,难以有效对齐图像和文本的表示,也无法细粒度定位幻觉段落,限制了模型可信度与实用性。
4/28/2025 12:28:27 PM
萍哥学AI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP