韩松
生成式AI时代的模型压缩与加速,韩松主讲MIT课程,资料全公开
近年来,生成式大模型(如大语言模型、扩散模型)已显示出卓越的性能,但它们需要大量的计算资源。为了让这些模型更易于使用,提高它们的效率至关重要。在最新的一季 MIT 6.5940 课程中,MIT 学者韩松将深入解读生成式大模型时代的「AI 计算的模型压缩与加速技术」。课程主页:《TinyML 和高效的深度学习计算》。概括来说,这门课程将介绍高效的人工智能计算技术,以便在资源有限的设备上实现强大的深度学习应用。课程主题包括模型压缩、剪枝、量化、神经架构搜索、分布式训练、数据 / 模型并行化、梯度压缩和设备微调,还介绍了
9/25/2023 5:08:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
AI新词
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
华为
大语言模型
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
编程
DeepMind
亚马逊
特斯拉
AI模型