Fast-dLLM
英伟达与 MIT、香港大学联手推出 Fast-dLLM 框架,推理速度提升惊人
在最近的科技进展中,英伟达与麻省理工学院(MIT)和香港大学联合推出了名为 Fast-dLLM 的新框架,显著提升了扩散模型(Diffusion-based LLMs)的推理速度,最高可达27.6倍。 这一创新的成果为语言模型的应用开辟了新天地。 扩散模型被视为自回归模型的有力竞争者,采用了双向注意力机制,使其在理论上能够实现多词元同步生成,从而加快解码速度。
6/3/2025 3:00:54 PM
AI在线
英伟达与MIT合作推出 Fast-dLLM 框架,AI 推理速度提升 27.6 倍
近日,科技巨头英伟达联合麻省理工学院(MIT)与香港大学,发布了名为 Fast-dLLM 的新框架。 这一创新的框架旨在显著提高扩散模型(Diffusion-based LLMs)的推理速度,最高可达27.6倍,为人工智能的应用提供了更为强大的技术支持。 扩散模型的挑战与机遇扩散模型被视为传统自回归模型(Autoregressive Models)的有力竞争者。
6/3/2025 2:00:54 PM
AI在线
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
字节跳动
工具
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉