Fast-dLLM
英伟达与 MIT、香港大学联手推出 Fast-dLLM 框架,推理速度提升惊人
在最近的科技进展中,英伟达与麻省理工学院(MIT)和香港大学联合推出了名为 Fast-dLLM 的新框架,显著提升了扩散模型(Diffusion-based LLMs)的推理速度,最高可达27.6倍。 这一创新的成果为语言模型的应用开辟了新天地。 扩散模型被视为自回归模型的有力竞争者,采用了双向注意力机制,使其在理论上能够实现多词元同步生成,从而加快解码速度。
6/3/2025 3:00:54 PM
AI在线
英伟达与MIT合作推出 Fast-dLLM 框架,AI 推理速度提升 27.6 倍
近日,科技巨头英伟达联合麻省理工学院(MIT)与香港大学,发布了名为 Fast-dLLM 的新框架。 这一创新的框架旨在显著提高扩散模型(Diffusion-based LLMs)的推理速度,最高可达27.6倍,为人工智能的应用提供了更为强大的技术支持。 扩散模型的挑战与机遇扩散模型被视为传统自回归模型(Autoregressive Models)的有力竞争者。
6/3/2025 2:00:54 PM
AI在线
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
AI新词
图像
Gemini
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
工具
计算
Sora
GPU
华为
大语言模型
RAG
具身智能
AI设计
字节跳动
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
编程
神器推荐
DeepMind
亚马逊
特斯拉
AI模型