AI在线 AI在线

COIDO

NeurIPS 2025 | 告别全量扫描!浙大提出COIDO:破解多模态数据选择「高耗」难题

本文第一作者是二年级博士生闫熠辰,主要研究方向是多模态大模型的数据质量管理;通讯作者是李环研究员,主要研究方向包括人工智能数据准备、大模型高效推理与部署、时空大数据与模型轻量化等。 01 省流版:一张图看懂 COIDO在深入技术细节之前,我们先用一张漫画来直观理解 COIDO (Coupled Importance-Diversity Optimization) 解决的核心问题与方案:正如钟离在漫画中所言,面对海量视觉指令数据的选择任务,传统方法需要遍历全部数据才能进行筛选造成大量「磨损」(高昂计算成本)。 同时在面对数据重要性和多样性问题时,传统方法往往顾此失彼。
12/14/2025 12:28:00 AM
机器之心