Coherent Contextual Decoding
告别「盲目自信」,CCD:扩散语言模型推理新SOTA
扩散语言模型(Diffusion Language Models)以其独特的 “全局规划” 与并行解码能力广为人知,成为 LLM 领域的全新范式之一。 然而在 Any-order 解码模式下,其通常面临推理速度较慢且生成逻辑不连贯等问题。 对此,华为小艺香港团队、香港城市大学及香港大学的研究人员们共同提出了一种全新的上下文一致性解码算法(Coherent Contextual Decoding, CCD),充分利用扩散过程中的上下文增广,从理论上纠正了传统 DLM 推理策略的 “短视性”,并进一步采用自适应解码方案在多种开源 DLMs 上同时实现了 3.48 倍的加速和 3.9% 的性能提升。
12/14/2025 12:03:00 AM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
Gemini
马斯克
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
3D
人形机器人
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
特斯拉
场景
AI模型
深度学习
亚马逊
架构
Transformer
MCP
编程
视觉
预测