AEPO
AEPO:智能体熵平衡策略优化,让探索更稳,推理更深!
在智能体强化学习的快速发展中,如何在探索与稳定之间取得平衡已成为多轮智能体训练的关键。 主流的熵驱动式智能体强化学习(Agentic RL)虽鼓励模型在高不确定性处分支探索,但过度依赖熵信号常导致训练不稳、甚至策略熵坍塌问题。 为此,中国人民大学高瓴人工智能学院与快手 Klear 语言大模型团队联合提出 Agentic Entropy-Balanced Policy Optimization(AEPO),一种面向多轮智能体的熵平衡强化学习优化算法。
11/1/2025 8:27:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
AI新词
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
AI for Science
Agent
苹果
芯片
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
具身智能
生成
百度
Sora
工具
GPU
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
深度学习
生成式AI
架构
DeepMind
亚马逊
编程
特斯拉
视觉
Transformer
AI模型
预测
MCP