AI在线 AI在线

RAG、向量数据库和LLM搜索:人工智能驱动商业智能的未来

译者 | 李睿审校 | 重楼本文对RAG、向量数据库和LLM搜索如何塑造人工智能驱动的商业智能未来进行探讨。 RAG通过集成知识检索提升LLM性能,解决其无法及时纳入最新或专有信息的问题,尤其在客户服务领域影响显著。 向量数据库则支持快速相似性搜索,理解查询语义。

RAG、向量数据库和LLM搜索:人工智能驱动商业智能的未来

译者 | 李睿

审校 | 重楼

本文对RAG、向量数据库和LLM搜索如何塑造人工智能驱动的商业智能未来进行探讨。RAG通过集成知识检索提升LLM性能,解决其无法及时纳入最新或专有信息的问题,尤其在客户服务领域影响显著。向量数据库则支持快速相似性搜索,理解查询语义。LLM搜索将超越关键字匹配,提供有意义且可操作的对话式答案。

在信息过剩的现代世界中,有效地发现、分析和利用知识的能力是一项主要的竞争优势。

如今,越来越多的企业将大型语言模型(LLM)融入业务中,而检索增强生成(RAG)、向量数据库和高级语义搜索等技术正在定义组织如何处理知识管理、决策和客户互动。总体而言,这些技术构成了新一代由人工智能驱动的商业智能的基石,并且更加灵活、能够感知上下文,并嵌入到日常企业运营的具体细节中。

什么是RAG,为什么它很重要?

从根本上说,检索增强生成(RAG)是一种通过集成知识检索组件来提高LLM性能的框架。RAG不依赖于LLM所训练的数据,而是在查询时从外部文档或数据中获取输入。这使得LLM能够产生更精确、更及时并特定于上下文的响应。

对于企业来说,这意味着人工智能系统可以立即搜索组织的知识库、政策、手册客户关系管理(CRM)系统,并提供特定于组织的响应。它有效弥补了LLM的一个重大缺陷——它们无法在不接受再训练的情况下整合最新或专有信息。

这项技术在客户服务行业正在产生重大影响,因为对于该行业来说,快速找到准确答案至关重要。客户服务代表需要从数千份政策文件、历史互动记录和CRM记录中快速找到答案。在这些场景下,传统的关键字搜索变得无效,返回不相关的结果并延迟响应。通过利用RAG和向量数据库,该系统能够根据查询的含义而不是确切的关键字,从相关的政策文件、以往案例、过去的电子邮件交互和聊天记录中检索准确的信息片段。然后,它会对这些信息进行总结并生成精确的响应,帮助客户服务代表提供更快、更准确的答案,最终提高效率和客户满意度。

另一方面,向量数据库在RAG系统的实现中非常有用。传统的关键字搜索引擎无法理解查询的语义含义。相比之下,向量数据库以文本、图像或其他类型数据的高维嵌入形式存储数据,以实现快速的相似性搜索。

为什么LLM搜索超越关键字匹配至关重要?

传统的企业搜索工具往往不够灵活,并且基于关键字匹配和固定类别产生结果。然而,基于LLM的搜索改变了游戏规则;它理解查询的含义,并提供有意义且可操作的对话式答案。

例如,对于客户提出的“如何处理国际退款?”这一问题,基于LLM构建的系统并不只是提供一系列相关链接,而是将公司政策、历史交易记录及CRM数据相结合并提供循序渐进的解决方案。当与RAG和向量数据库结合使用时,其输出结果会变得更加个性化、可追溯且可解释,这些因素在业务环境中至关重要。

随着人工智能的发展,RAG、向量数据库和基于LLM的搜索正在迅速成为企业智能的基础层。这些技术不仅使系统更加智能;它们正在使企业在采取行动时更快、更具适应性、更加数据驱动。尽早采取行动的企业不仅会从更快的答案中受益,还会从更好的决策中受益。

原文标题:RAG, vector databases, and LLM search: The future of AI-powered business intelligence,作者:Dhruv Thakkar

相关资讯

RAG实战|向量数据库LanceDB指南

LanceDB介绍LanceDB是一个开源的用 Rust 实现的向量数据库(),它的主要特点是:提供单机服务,可以直接嵌入到应用程序中支持多种向量索引算法,包括Flat、HNSW、IVF等。 支持全文检索,包括BM25、TF-IDF等。 支持多种向量相似度算法,包括Cosine、L2等。
4/3/2025 4:02:14 PM
周末程序猿

SpringAI用嵌入模型操作向量数据库!

嵌入模型(Embedding Model)和向量数据库(Vector Database/Vector Store)是一对亲密无间的合作伙伴,也是 AI 技术栈中紧密关联的两大核心组件,两者的协同作用构成了现代语义搜索、推荐系统和 RAG(Retrieval Augmented Generation,检索增强生成)等应用的技术基础。 “PS:准确来说 Vector Database 和 Vector Store 不完全相同,前者主要用于“向量”数据的存储,而 Vector Store 是用于存储和检索向量数据的组件。 在 Spring AI 中,嵌入模型 API 和 Spring AI Model API 和嵌入模型的关系如下:系统整体交互流程如下:接下来我们使用以下技术:Spring AI阿里云文本嵌入模型 text-embedding-v3SimpleVectorStore(内存级别存储和检索向量数据组件)实现嵌入模型操作内存级别向量数据库的案例。
4/2/2025 12:00:00 AM
磊哥

一文揭秘专为 RAG 打造的高性能开源图向量数据库:HelixDB

在人工智能技术尤其是大语言模型(LLM)蓬勃发展的浪潮中,检索增强生成(Retrieval-Augmented Generation,简称 RAG)正迅速成为提升生成式 AI 系统内容准确性、实时性与上下文相关性的核心手段。 RAG 通过将外部知识检索与语言模型推理相结合,显著缓解了模型“幻觉”问题,使其在问答系统、智能助手、企业知识中台等应用中展现出广阔前景。 然而,随着业务需求的不断升级,传统 RAG 系统所依赖的扁平向量表示与单一类型数据库架构,已难以满足对复杂语义结构建模与海量非结构化数据高效检索的双重需求。
5/20/2025 8:50:00 AM
Luga Lee
  • 1