AI在线 AI在线

一文彻底搞懂智能体Agent基于ReAct的工具调用

前言AI智能体是指具备一定自主性、能感知环境并通过智能决策执行特定任务的软件或硬件实体。 它结合了人工智能技术(如机器学习、自然语言处理、计算机视觉等),能够独立或协作完成目标。 基于大语言模型(LLM)的Function Calling可以令智能体实现有效的工具使用和与外部API的交互。

一文彻底搞懂智能体Agent基于ReAct的工具调用

前言

AI智能体是指具备一定自主性、能感知环境并通过智能决策执行特定任务的软件或硬件实体。它结合了人工智能技术(如机器学习、自然语言处理、计算机视觉等),能够独立或协作完成目标。

基于大语言模型(LLM)的Function Calling可以令智能体实现有效的工具使用和与外部API的交互。支持Function Calling的模型(如gpt-4,qwen-plus等)能够检测何时需要调用函数,并输出调用函数的函数名和所需参数的JSON格式结构化数据。

但并非所有的LLM模型都支持Function Calling(如deepseek-v3)。对于不支持Function Calling的模型,可通过ReAct的相对较为复杂的提示词工程,要求模型返回特定格式的响应,以便区分不同的阶段(思考、行动、观察)。

工具调用主要有两个用途:

  • 获取数据: 例如根据关键字从知识库检索内容、通过特定API接口获取业务数据
  • 执行行动: 例如通过API接口修改业务状态数据、执行预定业务操作

本文包含如下内容:

  • ReAct基础
  • 详细介绍基于ReAct的工具调用流程和涉及的交互消息
  • 手搓Agent代码实现基于ReAct的工具调用

ReAct基础

ReAct源于经典论文: REACT: SYNERGIZING REASONING AND ACTING IN LANGUAGE MODELS (链接:https://arxiv.org/pdf/2210.03629)

基于ReAct的智能体为了解决问题,需要经过几个阶段

  • Thought: 思考推理
  • Action:作出行动,决定要调用的工具和参数
  • Observation:行动的结果(工具输出)

以上3个阶段可能迭代多次,直到问题得到解决或者达到迭代次数上限。

一文彻底搞懂智能体Agent基于ReAct的工具调用

基于ReAct的工具调用依赖于复杂的提示词工程。系统提示词参考langchain的模板:

复制
Answer the following questions as best you can. You have access to the following tools:
{tool_strings}


The way you use the tools is by specifying a json blob.
Specifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).


The only values that should be in the "action" field are: {tool_names}


The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:


```
{{{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}}}
```


ALWAYS use the following format:


Question: the input question you must answer
Thought: you should always think about what to do
Action:
```
$JSON_BLOB
```
Observation: the result of the action
... (this Thought/Action/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question


Begin! Reminder to always use the exact characters `Final Answer` when responding.

基于ReAct的工具调用流程和交互消息

我们以查询北京和广州天气为例,LLM采用阿里云的deepseek-v3。查询天气的流程如下图:

一文彻底搞懂智能体Agent基于ReAct的工具调用

1. 发起查询请求

向LLM发起查询时,messages列表有2条messages:

  • 第1条role为system,定义了系统提示词(含工具定义)
  • 第2条role为user,包含如下内容:

     Question: 北京和广州天气怎么样

我们用curl发起POST请求,body的JSON结构可参考https://platform.openai.com/docs/api-reference/chat/create 。

请求里的stop字段需要设置为Observation:,否则LLM会直接输出整个Thought/Action/Observation流程并给出虚构的最终答案。我们仅需要LLM输出Thought/Action即可

复制
#!/bin/bash
export OPENAI_BASE_URL="https://dashscope.aliyuncs.com/compatible-mode/v1"
export OPENAI_API_KEY="sk-xxx" # 替换为你的key


curl ${OPENAI_BASE_URL}/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
  "model": "deepseek-v3",
  "messages": [
    {
      "role": "system",
      "content": "\nAnswer the following questions as best you can. You have access to the following tools:\n{\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"type\": \"string\", \"description\": \"the name of the location\"}}, \"required\": [\"location\"]}}\n\n\nThe way you use the tools is by specifying a json blob.\nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).\n\nThe only values that should be in the \"action\" field are: get_weather\n\nThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:\n\n```\n{{\n\"action\": $TOOL_NAME,\n\"action_input\": $INPUT\n}}\n```\n\nALWAYS use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction:\n```\n$JSON_BLOB\n```\nObservation: the result of the action\n... (this Thought/Action/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\n\nBegin! Reminder to always use the exact characters `Final Answer` when responding. \n"
    },
    {
      "role": "user",
      "content": "Question: 北京和广州天气怎么样\n\n"
    }
  ],
  "stop": "Observation:"
}'

2. LLM返回Action获取北京天气

LLM经过推理,发现需要先调用函数获取北京天气。

复制
Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。
Action:
```
{
  "action": "get_weather",
  "action_input": {
    "location": "北京"
  }
}
```

完整的JSON响应如下:

复制
{
  "choices": [
    {
      "message": {
        "content": "Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。\n\nAction:\n```\n{\n  \"action\": \"get_weather\",\n  \"action_input\": {\n    \"location\": \"北京\"\n  }\n}\n```",
        "role": "assistant"
      },
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null
    }
  ],
  "object": "chat.completion",
  "usage": {
    "prompt_tokens": 305,
    "completion_tokens": 49,
    "total_tokens": 354
  },
  "created": 1745651748,
  "system_fingerprint": null,
  "model": "deepseek-v3",
  "id": "chatcmpl-697b0627-4fca-975b-954c-7304386ac224"
}

3. 处理函数调用获取北京天气

解析处理LLM的Action获得函数名和参数列表,调用相应的API接口获得结果。

例如:通过http://weather.cma.cn/api/now/54511可获得北京的天气情况。

完整的JSON响应如下:

复制
{
  "msg": "success",
  "code": 0,
  "data": {
    "location": {
      "id": "54511",
      "name": "北京",
      "path": "中国, 北京, 北京"
    },
    "now": {
      "precipitation": 0.0,
      "temperature": 23.4,
      "pressure": 1005.0,
      "humidity": 43.0,
      "windDirection": "西南风",
      "windDirectionDegree": 216.0,
      "windSpeed": 2.7,
      "windScale": "微风",
      "feelst": 23.1
    },
    "alarm": [],
    "jieQi": "",
    "lastUpdate": "2025/04/26 15:00"
  }
}

4. 把上下文信息以及函数调用结果发给LLM

发给LLM的messages列表有2条messages:

  • 第1条role为system,定义了系统提示词(含工具定义)
  • 第2条role为user,包含如下内容:

     Question: 北京和广州天气怎么样

     Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气

     Action: {"action":"get_weather","action_input":{"location":"北京"}}

     Observation: 工具调用get_weather('北京')的结果

复制
#!/bin/bash
export OPENAI_BASE_URL="https://dashscope.aliyuncs.com/compatible-mode/v1"
export OPENAI_API_KEY="sk-xxx" # 替换为你的key


curl ${OPENAI_BASE_URL}/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
  "model": "deepseek-v3",
  "messages": [
    {
      "role": "system",
      "content": "\nAnswer the following questions as best you can. You have access to the following tools:\n{\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"type\": \"string\", \"description\": \"the name of the location\"}}, \"required\": [\"location\"]}}\n\n\nThe way you use the tools is by specifying a json blob.\nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).\n\nThe only values that should be in the \"action\" field are: get_weather\n\nThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:\n\n```\n{{\n\"action\": $TOOL_NAME,\n\"action_input\": $INPUT\n}}\n```\n\nALWAYS use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction:\n```\n$JSON_BLOB\n```\nObservation: the result of the action\n... (this Thought/Action/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\n\nBegin! Reminder to always use the exact characters `Final Answer` when responding. \n"
    },
    {
      "role": "user",
      "content": "Question: 北京和广州天气怎么样\n\nThought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。\n\nAction:\n```\n{\n\"action\": \"get_weather\",\n\"action_input\": {\n\"location\": \"北京\"\n}\n}\n```\nObservation: {\"msg\":\"success\",\"code\":0,\"data\":{\"location\":{\"id\":\"54511\",\"name\":\"北京\",\"path\":\"中国, 北京, 北京\"},\"now\":{\"precipitation\":0.0,\"temperature\":23.4,\"pressure\":1005.0,\"humidity\":43.0,\"windDirection\":\"西南风\",\"windDirectionDegree\":216.0,\"windSpeed\":2.7,\"windScale\":\"微风\",\"feelst\":23.1},\"alarm\":[],\"jieQi\":\"\",\"lastUpdate\":\"2025/04/26 15:00\"}}\n"
    }
  ],
  "stop": "Observation:"
}'

5. LLM返回Action获取广州天气

LLM经过推理,发现还需要调用函数获取广州天气。

复制
Thought: 我已经获取了北京的天气信息。接下来,我将获取广州的天气信息。
Action:
```
{
  "action": "get_weather",
  "action_input": {
    "location": "广州"
  }
}
```

完整的JSON响应如下:

复制
{
  "choices": [
    {
      "message": {
        "content": "Thought: 我已经获取了北京的天气信息。接下来,我将获取广州的天气信息。\n\nAction:\n```\n{\n\"action\": \"get_weather\",\n\"action_input\": {\n\"location\": \"广州\"\n}\n}\n```\nObservation",
        "role": "assistant"
      },
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null
    }
  ],
  "object": "chat.completion",
  "usage": {
    "prompt_tokens": 472,
    "completion_tokens": 46,
    "total_tokens": 518
  },
  "created": 1745651861,
  "system_fingerprint": null,
  "model": "deepseek-v3",
  "id": "chatcmpl-a822b8d7-9105-9dc2-8e98-4327afb50b3a"
}

6. 处理函数调用获取广州天气

解析处理LLM的Action获得函数名和参数列表,调用相应的API接口获得结果。

例如:通过http://weather.cma.cn/api/now/59287可获得广州的天气情况。

完整的JSON响应如下:

复制
{
  "msg": "success",
  "code": 0,
  "data": {
    "location": {
      "id": "59287",
      "name": "广州",
      "path": "中国, 广东, 广州"
    },
    "now": {
      "precipitation": 0.0,
      "temperature": 24.2,
      "pressure": 1005.0,
      "humidity": 79.0,
      "windDirection": "东北风",
      "windDirectionDegree": 31.0,
      "windSpeed": 1.3,
      "windScale": "微风",
      "feelst": 27.1
    },
    "alarm": [],
    "jieQi": "",
    "lastUpdate": "2025/04/26 15:00"
  }
}

7. 把上下文信息以及函数调用结果发给LLM

发给LLM的messages列表有2条messages:

  • 第1条role为system,定义了系统提示词(含工具定义)
  • 第2条role为user,包含如下内容:

     Question: 北京和广州天气怎么样

     Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气

     Action: {"action":"get_weather","action_input":{"location":"北京"}}

     Observation: 工具调用get_weather('北京')的结果

     Thought: 现在我已经获取了北京的天气信息,接下来我将获取广州的天气信息。

     Action: {"action":"get_weather","action_input":{"location":"广州"}}

     Observation: 工具调用get_weather('广州')的结果

复制
#!/bin/bash
export OPENAI_BASE_URL="https://dashscope.aliyuncs.com/compatible-mode/v1"
export OPENAI_API_KEY="sk-xxx" # 替换为你的key


curl ${OPENAI_BASE_URL}/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
  "model": "deepseek-v3",
  "messages": [
    {
      "role": "system",
      "content": "\nAnswer the following questions as best you can. You have access to the following tools:\n{\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"type\": \"string\", \"description\": \"the name of the location\"}}, \"required\": [\"location\"]}}\n\n\nThe way you use the tools is by specifying a json blob.\nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).\n\nThe only values that should be in the \"action\" field are: get_weather\n\nThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:\n\n```\n{{\n\"action\": $TOOL_NAME,\n\"action_input\": $INPUT\n}}\n```\n\nALWAYS use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction:\n```\n$JSON_BLOB\n```\nObservation: the result of the action\n... (this Thought/Action/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\n\nBegin! Reminder to always use the exact characters `Final Answer` when responding. \n"
    },
    {
      "role": "user",
      "content": "Question: 北京和广州天气怎么样\n\nThought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。\n\nAction:\n```\n{\n\"action\": \"get_weather\",\n\"action_input\": {\n\"location\": \"北京\"\n}\n}\n```\nObservation: {\"msg\":\"success\",\"code\":0,\"data\":{\"location\":{\"id\":\"54511\",\"name\":\"北京\",\"path\":\"中国, 北京, 北京\"},\"now\":{\"precipitation\":0.0,\"temperature\":23.4,\"pressure\":1005.0,\"humidity\":43.0,\"windDirection\":\"西南风\",\"windDirectionDegree\":216.0,\"windSpeed\":2.7,\"windScale\":\"微风\",\"feelst\":23.1},\"alarm\":[],\"jieQi\":\"\",\"lastUpdate\":\"2025/04/26 15:00\"}}\nThought: 现在我已经获取了北京的天气信息,接下来我将获取广州的天气信息。\n\nAction:\n```\n{\n\"action\": \"get_weather\",\n\"action_input\": {\n\"location\": \"广州\"\n}\n}\n```\nObservation\nObservation: {\"msg\":\"success\",\"code\":0,\"data\":{\"location\":{\"id\":\"59287\",\"name\":\"广州\",\"path\":\"中国, 广东, 广州\"},\"now\":{\"precipitation\":0.0,\"temperature\":24.2,\"pressure\":1005.0,\"humidity\":79.0,\"windDirection\":\"东北风\",\"windDirectionDegree\":31.0,\"windSpeed\":1.3,\"windScale\":\"微风\",\"feelst\":27.1},\"alarm\":[],\"jieQi\":\"\",\"lastUpdate\":\"2025/04/26 15:00\"}}\n"
    }
  ],
  "stop": "Observation:"
}'

8. LLM生成最终回复

LLM生成最终的回复:

复制
Thought: 我已经获取了北京和广州的天气信息,现在可以回答用户的问题了。


Final Answer: 北京的天气温度为23.4°C,湿度为43%,风向为西南风,风速为2.7米/秒。广州 的天气温度为24.2°C,湿度为79%,风向为东北风,风速为1.3米/秒。

完整的JSON响应如下:

复制
{
  "choices": [
    {
      "message": {
        "content": "Thought: 我已经获取了北京和广州的天气信息,现在可以回答用户的问题了。\n\nFinal Answer: 北京的天气温度为23.4°C,湿度为43%,风向为西南风,风速为2.7米/秒。广州 的天气温度为24.2°C,湿度为79%,风向为东北风,风速为1.3米/秒。",
        "role": "assistant"
      },
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null
    }
  ],
  "object": "chat.completion",
  "usage": {
    "prompt_tokens": 641,
    "completion_tokens": 79,
    "total_tokens": 720
  },
  "created": 1745652025,
  "system_fingerprint": null,
  "model": "deepseek-v3",
  "id": "chatcmpl-d9b85f31-589e-9c6f-8694-cf813344e464"
}

手搓Agent代码实现基于ReAct的工具调用

1. 创建python环境

复制
uv init agent
cd agent
uv venv
.venv\Scripts\activate

uv add openai requests python-dotenv

2. 设置API Key

创建.env,.env内容如下(注意修改OPENAI_API_KEY为您的key)

复制
OPENAI_API_KEY=your_api_key_here
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1

把.env添加到.gitignore

3. 实现Agent代码

基于openai sdk实现ReAct agent的伪代码主体逻辑如下:

复制
maxIter = 5 # 最大迭代次数
agent_scratchpad = "" # agent思考过程(Thought/Action/Observation)
for iterSeq in range(1, maxIter+1):
    构造chat completion请求
        messages有2条
            第1条为系统提示词消息(含工具定义)
            第2条为用户消息:Question + agent思考过程(Thought/Action/Observation)
        stop参数设置为"Observation:"
    获取chat completion结果
    如果chat completion结果带有"Final Answer:"
        返回最终答案
    如果chat completion结果带有Action
        解析并调用相应函数
        更新agent思考过程:把本次LLM的输出(Though/Action)和工具调用结果(Observation)添加到agent_scratchpad
        继续迭代

完整的main.py代码如下:

复制
import json
import re
import requests
import urllib.parse
from typing import Iterable
from openai import OpenAI
from openai.types.chat.chat_completion_message_param import ChatCompletionMessageParam
from openai.types.chat.chat_completion_user_message_param import (
    ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_system_message_param import (
    ChatCompletionSystemMessageParam,
)


# 加载环境变量
from dotenv import load_dotenv
load_dotenv()


client = OpenAI()
model = "deepseek-v3"


# 工具定义
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_weather",
            "description": "Get weather",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {"type": "string", "description": "location"}
                },
                "required": ["location"],
            },
        },
    }
]


# 系统提示词
def get_system_prompt():
    tool_strings = "\n".join([json.dumps(tool["function"]) for tool in tools])
    tool_names = ", ".join([tool["function"]["name"] for tool in tools])
    systemPromptFormat = """
Answer the following questions as best you can. You have access to the following tools:
{tool_strings}




The way you use the tools is by specifying a json blob.
Specifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).


The only values that should be in the "action" field are: {tool_names}


The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:


```
{{{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}}}
```


ALWAYS use the following format:


Question: the input question you must answer
Thought: you should always think about what to do
Action:
```
$JSON_BLOB
```
Observation: the result of the action
... (this Thought/Action/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question




Begin! Reminder to always use the exact characters `Final Answer` when responding. 
"""
    return systemPromptFormat.format(tool_strings=tool_strings, tool_names=tool_names)


# 实现获取天气
def get_weather(location: str) -> str:
    url = "http://weather.cma.cn/api/autocomplete?q=" + urllib.parse.quote(location)
    response = requests.get(url)
    data = response.json()
    if data["code"] != 0:
        return "没找到该位置的信息"
    location_code = ""
    for item in data["data"]:
        str_array = item.split("|")
        if (
            str_array[1] == location
            or str_array[1] + "市" == location
            or str_array[2] == location
        ):
            location_code = str_array[0]
            break
    if location_code == "":
        return "没找到该位置的信息"
    url = f"http://weather.cma.cn/api/now/{location_code}"
    return requests.get(url).text


# 实现工具调用
def invoke_tool(toolName: str, toolParamaters) -> str:
    result = ""
    if toolName == "get_weather":
        result = get_weather(toolParamaters["location"])
    else:
        result = f"函数{toolName}未定义"
    return result


def main():
    query = "北京和广州天气怎么样"
    systemMsg = ChatCompletionSystemMessageParam(
        role="system", cnotallow=get_system_prompt()
    )
    maxIter = 5  # 最大迭代次数
    agent_scratchpad = ""  # agent思考过程
    action_pattern = re.compile(r"\nAction:\n`{3}(?:json)?\n(.*?)`{3}.*?$", re.DOTALL)
    for iterSeq in range(1, maxIter + 1):
        messages: Iterable[ChatCompletionMessageParam] = list()
        messages.append(systemMsg)
        messages.append(
            ChatCompletionUserMessageParam(
                role="user", cnotallow=f"Question: {query}\n\n{agent_scratchpad}"
            )
        )
        print(f">> iterSeq:{iterSeq}")
        print(f">>> messages: {json.dumps(messages)}")
        # 向LLM发起请求,注意需要设置stop参数
        chat_completion = client.chat.completions.create(
            messages=messages,
            model=model,
            stop="Observation:",
        )
        content = chat_completion.choices[0].message.content
        print(f">>> content:\n{content}")
        final_answer_match = re.search(r"\nFinal Answer:\s*(.*)", content)
        if final_answer_match:
            final_answer = final_answer_match.group(1)
            print(f">>> 最终答案: {final_answer}")
            return
        action_match = action_pattern.search(content)
        if action_match:
            obj = json.loads(action_match.group(1))
            toolName = obj["action"]
            toolParameters = obj["action_input"]
            print(f">>> tool name:{toolName}")
            print(f">>> tool parameters:{toolParameters}")
            result = invoke_tool(toolName, toolParameters)
            print(f">>> tool result: {result}")
            # 把本次LLM的输出(Though/Action)和工具调用结果(Observation)添加到agent_scratchpad
            agent_scratchpad += content + f"\nObservation: {result}\n"
        else:
            print(">>> ERROR: detect invalid response")
            return
    print(">>> 迭代次数达到上限,我无法得到最终答案")


main()

运行代码:uv run .\main.py

输出日志如下:

复制
>> iterSeq:1
>>> messages: [{"role": "system", "content": "\nAnswer the following questions as best you can. You have access to the following tools:\n{\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"type\": \"string\", \"description\": \"the name of the location\"}}, \"required\": [\"location\"]}}\n\n\nThe way you use the tools is by specifying a json blob.\nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).\n\nThe only values that should be in the \"action\" field are: get_weather\n\nThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:\n\n```\n{{\n\"action\": $TOOL_NAME,\n\"action_input\": $INPUT\n}}\n```\n\nALWAYS use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction:\n```\n$JSON_BLOB\n```\nObservation: the result of the action\n... (this Thought/Action/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\n\nBegin! Reminder to always use the exact characters `Final Answer` when responding. \n"}, {"role": "user", "content": "Question: \u5317\u4eac\u548c\u5e7f\u5dde\u5929\u6c14\u600e\u4e48\u6837\n\n"}]
>>> content:
Thought: 我需要获取北京和广州的天气信息。首先,我将获取北京的天气。


Action:
```
{
"action": "get_weather",
"action_input": {
"location": "北京"
}
}
```
>>> tool name:get_weather
>>> tool parameters:{'location': '北京'}
>>> tool result: {"msg":"success","code":0,"data":{"location":{"id":"54511","name":"北京","path":"中国, 北京, 北京"},"now":{"precipitation":0.0,"temperature":23.4,"pressure":1005.0,"humidity":43.0,"windDirection":"西南风","windDirectionDegree":216.0,"windSpeed":2.7,"windScale":"微风","feelst":23.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}
>> iterSeq:2
>>> messages: [{"role": "system", "content": "\nAnswer the following questions as best you can. You have access to the following tools:\n{\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"type\": \"string\", \"description\": \"the name of the location\"}}, \"required\": [\"location\"]}}\n\n\nThe way you use the tools is by specifying a json blob.\nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).\n\nThe only values that should be in the \"action\" field are: get_weather\n\nThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:\n\n```\n{{\n\"action\": $TOOL_NAME,\n\"action_input\": $INPUT\n}}\n```\n\nALWAYS use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction:\n```\n$JSON_BLOB\n```\nObservation: the result of the action\n... (this Thought/Action/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\n\nBegin! Reminder to always use the exact characters `Final Answer` when responding. \n"}, {"role": "user", "content": "Question: \u5317\u4eac\u548c\u5e7f\u5dde\u5929\u6c14\u600e\u4e48\u6837\n\nThought: \u6211\u9700\u8981\u83b7\u53d6\u5317\u4eac\u548c\u5e7f\u5dde\u7684\u5929\u6c14\u4fe1\u606f\u3002\u9996\u5148\uff0c\u6211\u5c06\u83b7\u53d6\u5317\u4eac\u7684\u5929\u6c14\u3002\n\nAction:\n```\n{\n\"action\": \"get_weather\",\n\"action_input\": {\n\"location\": \"\u5317\u4eac\"\n}\n}\n```\nObservation: {\"msg\":\"success\",\"code\":0,\"data\":{\"location\":{\"id\":\"54511\",\"name\":\"\u5317\u4eac\",\"path\":\"\u4e2d\u56fd, \u5317\u4eac, \u5317\u4eac\"},\"now\":{\"precipitation\":0.0,\"temperature\":23.4,\"pressure\":1005.0,\"humidity\":43.0,\"windDirection\":\"\u897f\u5357\u98ce\",\"windDirectionDegree\":216.0,\"windSpeed\":2.7,\"windScale\":\"\u5fae\u98ce\",\"feelst\":23.1},\"alarm\":[],\"jieQi\":\"\",\"lastUpdate\":\"2025/04/26 15:00\"}}\n"}]
>>> content:
Thought: 现在我已经获取了北京的天气信息,接下来我将获取广州的天气信息。


Action:
```
{
"action": "get_weather",
"action_input": {
"location": "广州"
}
}
```
Observation
>>> tool name:get_weather
>>> tool parameters:{'location': '广州'}
>>> tool result: {"msg":"success","code":0,"data":{"location":{"id":"59287","name":"广州","path":"中国, 广东, 广州"},"now":{"precipitation":0.0,"temperature":24.2,"pressure":1005.0,"humidity":79.0,"windDirection":"东北风","windDirectionDegree":31.0,"windSpeed":1.3,"windScale":"微风","feelst":27.1},"alarm":[],"jieQi":"","lastUpdate":"2025/04/26 15:00"}}
>> iterSeq:3
>>> messages: [{"role": "system", "content": "\nAnswer the following questions as best you can. You have access to the following tools:\n{\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"type\": \"string\", \"description\": \"the name of the location\"}}, \"required\": [\"location\"]}}\n\n\nThe way you use the tools is by specifying a json blob.\nSpecifically, this json should have a `action` key (with the name of the tool to use) and a `action_input` key (with the input to the tool going here).\n\nThe only values that should be in the \"action\" field are: get_weather\n\nThe $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions. Here is an example of a valid $JSON_BLOB:\n\n```\n{{\n\"action\": $TOOL_NAME,\n\"action_input\": $INPUT\n}}\n```\n\nALWAYS use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction:\n```\n$JSON_BLOB\n```\nObservation: the result of the action\n... (this Thought/Action/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\n\nBegin! Reminder to always use the exact characters `Final Answer` when responding. \n"}, {"role": "user", "content": "Question: \u5317\u4eac\u548c\u5e7f\u5dde\u5929\u6c14\u600e\u4e48\u6837\n\nThought: \u6211\u9700\u8981\u83b7\u53d6\u5317\u4eac\u548c\u5e7f\u5dde\u7684\u5929\u6c14\u4fe1\u606f\u3002\u9996\u5148\uff0c\u6211\u5c06\u83b7\u53d6\u5317\u4eac\u7684\u5929\u6c14\u3002\n\nAction:\n```\n{\n\"action\": \"get_weather\",\n\"action_input\": {\n\"location\": \"\u5317\u4eac\"\n}\n}\n```\nObservation: {\"msg\":\"success\",\"code\":0,\"data\":{\"location\":{\"id\":\"54511\",\"name\":\"\u5317\u4eac\",\"path\":\"\u4e2d\u56fd, \u5317\u4eac, \u5317\u4eac\"},\"now\":{\"precipitation\":0.0,\"temperature\":23.4,\"pressure\":1005.0,\"humidity\":43.0,\"windDirection\":\"\u897f\u5357\u98ce\",\"windDirectionDegree\":216.0,\"windSpeed\":2.7,\"windScale\":\"\u5fae\u98ce\",\"feelst\":23.1},\"alarm\":[],\"jieQi\":\"\",\"lastUpdate\":\"2025/04/26 15:00\"}}\nThought: \u73b0\u5728\u6211\u5df2\u7ecf\u83b7\u53d6\u4e86\u5317\u4eac\u7684\u5929\u6c14\u4fe1\u606f\uff0c\u63a5\u4e0b\u6765\u6211\u5c06\u83b7\u53d6\u5e7f\u5dde\u7684\u5929\u6c14\u4fe1\u606f\u3002\n\nAction:\n```\n{\n\"action\": \"get_weather\",\n\"action_input\": {\n\"location\": \"\u5e7f\u5dde\"\n}\n}\n```\nObservation\nObservation: {\"msg\":\"success\",\"code\":0,\"data\":{\"location\":{\"id\":\"59287\",\"name\":\"\u5e7f\u5dde\",\"path\":\"\u4e2d\u56fd, \u5e7f\u4e1c, \u5e7f\u5dde\"},\"now\":{\"precipitation\":0.0,\"temperature\":24.2,\"pressure\":1005.0,\"humidity\":79.0,\"windDirection\":\"\u4e1c\u5317\u98ce\",\"windDirectionDegree\":31.0,\"windSpeed\":1.3,\"windScale\":\"\u5fae\u98ce\",\"feelst\":27.1},\"alarm\":[],\"jieQi\":\"\",\"lastUpdate\":\"2025/04/26 15:00\"}}\n"}]
>>> content:
Thought: 我已经获取了北京和广州的天气信息,现在可以回答用户的问题了。


Final Answer: 北京的天气情况为:温度23.4°C,湿度43%,西南风,风速2.7米/秒,微风。广州的天气情况为:温度24.2°C,湿度79%,东北风,风速1.3米/秒,微风。
>>> 最终答案: 北京的天气情况为:温度23.4°C,湿度43%,西南风,风速2.7米/秒,微风。广州的天气情况为:温度24.2°C,湿度79%,东北风,风速1.3米/秒,微风。

总结

基于Function Calling和基于ReAct的工具调用有各自的优缺点:

1. Function Calling

  • 无需设定系统提示词,LLM根据tools定义即可触发工具调用,token消耗较少
  • 模型参数量相对较大。模型的训练数据必须包含Function Calling相关的内容,以确保模型能够理解和生成结构化输出,结构化输出更稳定
  • 输出结果较为容易处理
  • 隐藏了推理过程,缺乏可解释性

2. ReAct

  • 需要设置复杂的系统提示词,token消耗较多
  • 对模型参数要求较低
  • 输出结果处理比Function Calling复杂
  • 推理过程可见,更高的可解释性

相关资讯

让AI成为你的React代码专家的3个秘诀

深夜,我盯着眼前庞大的React项目,一行行代码仿佛在跳动。 作为一名全栈开发者,我深知重构这样的项目将耗费无数个不眠之夜。 然而,当我尝试让AI协助修改代码时,却屡屡遇到挫折:组件太复杂导致AI理解困难,代码结构混乱让AI无从下手,项目依赖关系复杂使得AI难以准确推断......如何让AI真正成为我们的得力助手?
1/26/2025 12:00:30 AM
coderidea

如何运用DeepSeek R1构建一款全栈简历筛选应用

译者 | 核子可乐审校 | 重楼在本文中,我们将共同了解如何使用DeepSeek R1大模型构建智能简历分析应用,节约运营成本。 DeepSeek开源大模型的发布已经在技术社区引发巨大轰动。 如今,开发者们无需接入Claude、ChatGPT等在线AI模型,即可轻松实现本地应用程序构建。
2/8/2025 8:18:39 AM
核子可乐

从入门到精通:如何在React中构建人工智能驱动的梗图生成器

译者 | 李睿审校 | 重楼为什么要构建人工智能梗图生成器? 梗图(Meme)堪称互联网时代的“全民语言”。 无论是想调侃朋友,还是想表达编程让人崩溃的无奈,梗图总能精准地表达其意境。
4/24/2025 8:39:17 AM
李睿
  • 1