Zipper
多模态大模型不够灵活,谷歌DeepMind创新架构Zipper:分开训练再「压缩」
最近的一系列研究表明,纯解码器生成模型可以通过训练利用下一个 token 预测生成有用的表征,从而成功地生成多种模态(如音频、图像或状态 - 动作序列)的新序列,从文本、蛋白质、音频到图像,甚至是状态序列。能够同时生成多种模态输出的多模态模型一般是通过某种形式的词汇扩展(将多模态表征转换为离散 token 并添加到模型的基本词汇表中)来实现的,即在预训练阶段或在后期微调阶段进行跨模态对齐。多模态预训练方法具有很强的性能优势(例如,一个模型可以原生理解多种模态),但也有缺点。例如,无法解决如何在预训练后添加新模态的问
6/3/2024 3:27:00 PM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
蛋白质
具身智能
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
字节跳动
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
亚马逊
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉