AI在线 AI在线

主动学习

谷歌推出新方法:训练数据量减少 1 万倍,提升模型精准度

近日,谷歌在其研究中提出了一种新颖的主动学习筛选流程,旨在大幅降低微调大型语言模型所需的训练数据量。 根据实验结果,这种方法能够将训练数据量降低至原来的1万分之一,同时提高模型与人类专家判断的一致性达65%。 在实际应用中,如广告内容分类、金融数据安全分析等领域,对高保真训练数据的需求一直很高,但筛选出符合要求的数据不仅难度大,成本也极为昂贵。
8/25/2025 3:00:52 PM
AI在线

厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

编辑 | KX传统的材料发现依赖反复试验或偶然发现,效率低下且成本高昂。AI 在发现新型催化剂方面潜力巨大。然而,受到算法的选择,以及数据质量和数量的影响。在此,来自厦门大学、深圳大学、武汉大学、南京航空航天大学和英国利物浦大学的研究团队开发了一种迁移学习范式,结合了预训练模型、集成学习和主动学习,能够预测未被发现的钙钛矿氧化物,并增强该反应的通用性。通过筛选 16,050 种成分,鉴定和合成了 36 种新的钙钛矿氧化物,其中包括 13 种纯钙钛矿结构。Pr0.1Sr0.9Co0.5Fe0.5O3(PSCF)和 P
7/31/2024 2:18:00 PM
ScienceAI
  • 1