长文本处理
北大团队提出全新框架LIFT 将长上下文知识注入模型参数
北京大学张牧涵团队提出了一种全新的框架——Long Input Fine-Tuning (LIFT),通过将长输入文本训练进模型参数中,使任意短上下文窗口模型获得长文本处理能力。 这一方法颠覆了传统的长文本处理思路,不再专注于无限扩充上下文窗口,而是将长文本知识内化到模型参数中,类似于人类将工作记忆转化为长期记忆的过程。 目前大模型处理长文本面临两大主要挑战:传统注意力机制的平方复杂度导致处理长文本时计算和内存开销巨大 模型难以理解散落在长文本各处的长程依赖关系现有的解决方案如RAG和长上下文适配各有局限:RAG依赖准确的检索,容易引入噪声导致幻觉 长上下文适配的推理复杂度高,上下文窗口仍然有限LIFT的技术创新LIFT框架包含三个关键组件:动态高效的长输入训练通过分段的语言建模将长文本切分为有重叠的片段 避免因过长上下文造成的推理复杂度提升和长程依赖丢失 训练复杂度对长文本长度呈线性增长 平衡模型能力的门控记忆适配器设计专门的Gated Memory Adapter架构 动态平衡原始模型的In-Context Learning能力和对长输入的记忆理解 允许模型根据查询自动调节使用多少LIFT记忆的内容辅助任务训练通过预训练LLM基于长文本自动生成问答类辅助任务 补偿模型在切段训练中可能损失的能力 帮助模型学会应用长文本中的信息回答问题实验结果LIFT在多个长上下文基准测试上取得显著提升:LooGLE长依赖问答:Llama38B的正确率从15.44%提升至29.97% LooGLE短依赖问答:Gemma29B的正确率从37.37%提升至50.33% LongBench多项子任务:Llama3通过LIFT在5个子任务中的4个有明显提升消融实验表明,Gated Memory架构相比使用PiSSA微调的原模型,在LooGLE ShortQA数据集上的GPT-4score提升了5.48%。
3/17/2025 3:59:00 PM
AI在线
AI21 Labs发布Jamba 1.6,打破长文本处理极限、支持多种语言
AI21Labs 近日发布了其最新的 Jamba1.6系列大型语言模型,这款模型被称为当前市场上最强大、最高效的长文本处理模型。 与传统的 Transformer 模型相比,Jamba 模型在处理长上下文时展现出了更高的速度和质量,其推理速度比同类模型快了2.5倍,标志着一种新的技术突破。 Jamba1.6系列包括 Jamba Mini(12亿参数)和 Jamba Large(94亿参数),并且专门针对商业应用进行了优化,具备函数调用、结构化输出(如 JSON)和基于现实的生成能力。
3/9/2025 11:06:00 AM
AI在线
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
蛋白质
具身智能
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
字节跳动
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉