ZAPS
零样本 | ZAPS:零样本扩散采样,3倍加速逆问题重建,重塑高效影像修复新范式
一、 一眼概览ZAPS(Zero-Shot Approximate Posterior Sampling)是一种针对扩散模型(Diffusion Models, DMs)在逆问题(Inverse Problems)中的高效采样方法。 它利用零样本学习(Zero-Shot Learning)进行自适应超参数优化,使得扩散采样步骤固定,同时提高重建质量并减少推理时间。 二、核心问题当前的扩散模型在解决逆问题(如去模糊、修复、超分辨率)时,存在以下挑战:需要大量的采样步骤,导致推理速度慢;现有的噪声调度策略(Noise Schedule)在逆问题场景下难以直接适用;传统方法使用手动调整的对数似然权重(Log-Likelihood Weights),不够鲁棒,容易导致次优解。
2/8/2025 11:12:34 AM
萍哥学AI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
腾讯
Agent
Claude
芯片
Stable Diffusion
蛋白质
具身智能
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
字节跳动
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
亚马逊
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉