预训练语言模型
上海交大&中山大学团队使用ESMFold、预训练语言模型以及Graph Transformer,进行蛋白质结合位点预测
编辑 | 萝卜皮识别蛋白质的功能位点,例如蛋白质、肽或其他生物成分的结合位点,对于理解相关的生物过程和药物设计至关重要。然而,现有的基于序列的方法的预测准确性有限,因为它们只考虑序列相邻的上下文特征并且缺乏结构信息。上海交通大学和中山大学的研究人员提出了 DeepProSite,用于利用蛋白质结构和序列信息来识别蛋白质结合位点。DeepProSite 首先从 ESMFold 生成蛋白质结构,并从预训练的语言模型生成序列表示。然后,它使用 Graph Transformer 并将结合位点预测制定为图节点分类。在预测蛋
12/29/2023 6:13:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
英伟达
马斯克
Anthropic
图像
AI创作
训练
LLM
论文
代码
苹果
AI for Science
算法
Agent
腾讯
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
人形机器人
生成式
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
百度
研究
字节跳动
GPU
生成
工具
华为
AGI
计算
大型语言模型
AI设计
生成式AI
搜索
视频生成
亚马逊
AI模型
DeepMind
特斯拉
场景
深度学习
Transformer
架构
Copilot
MCP
编程
视觉