应力
Nature子刊 | 通过视频去噪扩散模型进行非线性机械超材料逆向设计
编辑 | 绿萝复杂材料特性的逆向设计,在解决软机器人、生物医学植入物和织工程等方面具有巨大潜力。尽管机器学习模型提供了此类逆映射,但它们通常仅限于线性目标属性。近日,苏黎世联邦理工学院(ETH Zurich)的研究人员为了定制非线性响应,证明了在周期性随机 cellular 结构的全场数据上训练的视频扩散生成模型,可以成功地预测和调整它们在大应变状态下的非线性变形和应力响应,包括屈曲和接触。成功的关键是打破直接学习从属性到设计的映射的常见策略,并将框架扩展为内在估计预期变形路径和全场内应力分布,这与有限元模拟非常一
1/5/2024 10:45:00 AM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
AI新词
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
华为
大语言模型
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
编程
DeepMind
亚马逊
特斯拉
AI模型