隐扩散模型
大模型一定就比小模型好?谷歌的这项研究说不一定
在这个大模型不断创造新成就的时代,我们通常对机器学习模型有一个直观认知:越大越好。但事实果真如此吗?近日,Google Research 一个团队基于隐扩散模型(LDM)进行了大量实验研究,得出了一个结论:更大并不总是更好(Bigger is not Always Better),尤其是在预算有限时。论文标题:Bigger is not Always Better: Scaling Properties of Latent Diffusion Models论文地址: 近段时间,隐扩散模型和广义上的扩散模型取得的成
4/22/2024 10:53:00 AM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
AI新词
图像
智能体
Gemini
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
工具
计算
Sora
GPU
华为
大语言模型
RAG
具身智能
AI设计
字节跳动
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
编程
神器推荐
DeepMind
亚马逊
特斯拉
AI模型