液态
打破Transformer霸权!液态神经网络统治风电预测!
一眼概览该论文提出一种受生物神经系统启发的Liquid Neural Network(LNN)框架,首次将其应用于风电多时间尺度预测任务,并在多个数据集上显著优于LSTM、GRU等主流方法。 核心问题风电预测面临高度不确定性和非线性动态问题,传统深度学习方法如LSTM、GRU虽有成效,但缺乏解释性和泛化能力。 该研究致力于解决如何在多时间尺度、不同分辨率和变量数下,准确且透明地预测风电输出的问题。
5/9/2025 8:48:06 AM
萍哥学AI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
英伟达
Anthropic
论文
代码
AI新词
训练
算法
Stable Diffusion
芯片
LLM
蛋白质
开发者
腾讯
Claude
苹果
生成式
AI for Science
Agent
神经网络
3D
机器学习
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
GPU
AI设计
华为
工具
大语言模型
RAG
搜索
具身智能
字节跳动
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
亚马逊
神器推荐
Copilot
DeepMind
特斯拉
应用