文档问答
聚焦结构化注意力,探索提升多模态大模型文档问答性能
本文聚焦多模态大语言模型(MLLMs)在文档问答(DocQA)任务中的性能提升,提出无需改动模型架构或额外训练的结构化输入方法,通过保留文档层次结构与空间关系(如标题、表格、图像位置)优化理解能力。 研究发现,传统无结构OCR输入导致注意力分散,性能下降,而 LaTeX 范式结构化输入显著提升表现。 注意力分析揭示其诱导“结构化注意力”,减少无关区域干扰,聚焦语义核心。
9/11/2025 1:23:28 PM
互联网算法团队
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉