VADS
提升生成式零样本学习能力,视觉增强动态语义原型方法入选CVPR 2024
虽然我从来没见过你,但是我有可能「认识」你 —— 这是人们希望人工智能在「一眼初见」下达到的状态。为了达到这个目的,在传统的图像识别任务中,人们在带有不同类别标签的大量图像样本上训练算法模型,让模型获得对这些图像的识别能力。而在零样本学习(ZSL)任务中,人们希望模型能够举一反三,识别在训练阶段没有见过图像样本的类别。生成式零样本学习(GZSL)是实现零样本学习的一种有效方法。在生成式零样本学习中,首先需要训练一个生成器来合成未见类的视觉特征,这个生成过程是以前面提到的属性标签等语义描述为条件驱动的。有了生成的视觉
3/15/2024 2:59:00 PM
机器之心
- 1
资讯热榜
苹果发布全新Xcode 26开发者工具:内置ChatGPT先进AI功能
Microsoft Releases 700 Real AI Cases to Explore New Intelligent Work Models
豆包App“一句话P图”功能全新升级 基于SeedEdit 3.0实现全面优化
微软发布 700 个真实 AI 案例,探索智能化工作新模式
DeepSeek前高管秘密创业,新AI Agent项目已获顶级VC押注
苹果向开发者开放本地AI能力,推出全新Foundation Models框架
Li Hang, head of ByteDance AI Lab, resigns; Seed team enters adjustment period
支持MCP!开源智能体开发框架 Rowboat:打造你的智能助手只需几分钟
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
GPT
Meta
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
Claude
AI设计
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
LLM
字节跳动
Transformer
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构