推理密集型检索
从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准
在当前由大语言模型(LLM)驱动的技术范式中,检索增强生成(RAG)已成为提升模型知识能力与缓解「幻觉」的核心技术。 然而,现有 RAG 系统在面对需多步逻辑推理任务时仍存在显著局限,具体挑战如下:表面相关性 (Surface Relevance):基于 TF-IDF/BM25 等传统方法过度依赖词汇重叠度,倾向于召回与查询共享关键词的文档,导致检索结果停留于浅层文本匹配。 深度相关性 (Deep Relevance):真实场景中的复杂查询(如医学诊断推导、数学定理证明)其相关性往往是隐性的,隐藏在概念类比、逻辑推演或因果链条之中,需要模型具备超越字面含义的理解能力。
9/9/2025 8:10:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
马斯克
智能体
AI创作
AI新词
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
开发者
Claude
苹果
AI for Science
Agent
生成式
神经网络
机器学习
3D
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
工具
GPU
华为
RAG
AI设计
大语言模型
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
视频生成
预测
AGI
视觉
伟达
架构
Transformer
神器推荐
亚马逊
特斯拉
编程
Copilot
DeepMind