图示
Nature子刊综述:储层计算未来的新机遇和挑战,华为联合复旦等发布
储层计算可能发挥重要作用的应用领域。编辑 | 紫罗尽管深度学习在处理信息方面取得了巨大成功,但其依赖于训练大型神经网络模型,限制了其在常见应用中的部署。因此,人们对开发能快速推理和快速适应的小型轻量级模型的需求日益增长。作为当前深度学习范式的替代方向,神经形态计算研究引起了人们的极大兴趣,其主要关注开发新型计算系统,这些系统的能耗只有当前基于晶体管的计算机的一小部分。在神经形态计算中,一个重要的模型家族是储层计算(RC),储层计算起源于 21 世纪初,它在过去的二十年中取得了重大进展。为了释放储层计算的全部功能,为
3/12/2024 5:55:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
马斯克
智能体
AI创作
Anthropic
英伟达
论文
AI新词
代码
训练
算法
Stable Diffusion
LLM
芯片
蛋白质
腾讯
开发者
Claude
苹果
生成式
AI for Science
Agent
神经网络
3D
机器学习
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
GPU
工具
华为
RAG
AI设计
大语言模型
搜索
字节跳动
具身智能
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
神器推荐
亚马逊
Copilot
特斯拉
应用
DeepMind